首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The O-polysaccharide (O-antigen) of Providencia stuartii O44:H4 (strain 3768/51) was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, and H-detected (1)H,(13)C HSQC, and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure: [Formula: see text].  相似文献   

2.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide from Providencia alcalifaciens O27 and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments. It was found that the polysaccharide is built up of linear partially O-acetylated tetrasaccharide repeating units and has the following structure: [structure: see text] where Qui4NFo stands for 4-formamido-4,6-dideoxyglucose (4-formamido-4-deoxyquinovose). The O-polysaccharide structure of Providencia stuartii O43 established earlier was revised with respect to the configuration of the constituent 4-amino-4,6-dideoxyhexose (from Rha4N to Qui4N).  相似文献   

3.
The O-polysaccharide was isolated by mild acid hydrolysis of the lipopolysaccharide of Rahnella aquatilis 1-95 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including NOESY and 1H,13C HSQC experiments for linkage and sequence analysis. The following structure of the branched trisaccharide repeating unit of the O-polysaccharide was established: [carbohydrate structure: see text].  相似文献   

4.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O47:H4, strain 3646/51. Studies by sugar and methylation analyses along with Smith degradation and 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, ROESY and H-detected 1H,13C HSQC and HMBC experiments, showed that the polysaccharide has a branched hexasaccharide repeating unit with the following structure: [carbohydrate structure: see text]  相似文献   

5.
The O-polysaccharide was isolated from the lipopolysaccharide of the plant-growth-promoting bacterium Azospirillum irakense KBC1 and studied by sugar and methylation analyses, Smith degradation and 1H and 13C NMR spectroscopy, including 1H, 13C HSQC and NOESY experiments for linkage and sequence analysis. The following structure of the branched hexasaccharide repeating unit of the O-polysaccharide with an unusually long side chain was established: [carbohydrate structure: see text].  相似文献   

6.
A teichoic acid-like O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide (LPS) of Escherichia coli O29. The O-polysaccharide and an oligosaccharide obtained by dephosphorylation of the O-polysaccharide were studied by sugar analysis along with 1H and 13C NMR spectroscopy. The following structure of the branched oligosaccharide repeating unit, containing five monosaccharide residues and glycerol 1-phosphate (D-Gro-1-P), was established: [carbohydrate structure: see text].  相似文献   

7.
A neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis OC (CCUG 10702) and studied by sugar and methylation analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text]. Based on the unique structure of the O-polysaccharide and serological data, we propose classifying P. mirabilis OC (CCUG 10702) into a new separate Proteus serogroup O75. A weak cross-reaction of O-antiserum against P. mirabilis OC with the lipopolysaccharide of P. mirabilis O49 was accounted for by a similarity in the O-polysaccharide structures.  相似文献   

8.
The O-polysaccharide of a phytopathogenic bacterium, Erwinia carotovora ssp. carotovora GSPB 436, was studied by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy. The following structure of the branched tetrasaccharide repeating unit of the O-polysaccharide was established: [carbohydrate structure in text] The O-polysaccharide contains a minor proportion of 4-O-methylrhamnose, which is suggested to terminate the polymer main chain.  相似文献   

9.
The O-polysaccharide was isolated from the lipopolysaccharide of Escherichia coli O168 and studied by chemical analyses and Smith degradation along with (1)H and (13)C NMR spectroscopies. The following structure of the branched pentasaccharide repeating unit of the O-polysaccharide was established: [carbohydrate structure: see text] where 6-O-acetylation of GlcNAc is partial. Reinvestigation of the O-polysaccharide of Shigella dysenteriae type 4 established earlier showed it to have the same structure except for that the lateral Fuc residue is nonstoichiometrically O-acetylated at each position.  相似文献   

10.
The following structure of the O-polysaccharide of the phytopathogenic bacterium Xanthomonas cassavae GSPB 2437 was determined by sugar analysis along with 1H and 13C NMR spectroscopy: [structure: see text].  相似文献   

11.
A neutral O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of the plant-growth-promoting bacterium Azospirillum lipoferum Sp59b. On the basis of sugar and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopy, including a NOESY experiment, the following structure of the branched hexasaccharide repeating unit of the O-polysaccharide was established: [carbohydrate structure: see text].  相似文献   

12.
The O-polysaccharide (O-antigen) of Providencia stuartii O18 was obtained by mild acid degradation of the lipopolysaccharide and studied by chemical methods and NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text] where Qui3NAc is 3-acetamido-3,6-dideoxyglucose. Anti-P. stuartii O18 serum cross-reacted with the O-antigen of Proteus genomospecies 4, which could be accounted for the marked structural similarities of the main chain.  相似文献   

13.
The O-polysaccharide of Rahnella aquatilis 95 U003 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure:  相似文献   

14.
A highly phosphorylated O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis O41 followed by GPC. The initial and dephosphorylated polysaccharides and phosphorylated products from two sequential Smith degradations were studied by (1)H, (13)C and (31)P NMR spectroscopy and ESI-MS. The O-polysaccharide was found to have a tetrasaccharide repeating unit containing one ribitol phosphate (presumably d-Rib-ol-5-P) and two ethanolamine phosphate (Etn-P) groups, one of which is present in the stoichiometric amount and the other in a nonstoichiometric amount. The following structure of the O-polysaccharide was established:  相似文献   

15.
Mild acid degradation of the lipopolysaccharide (LPS) of Proteus mirabilis O20 resulted in depolymerisation of the O-polysaccharide to give a repeating-unit pentasaccharide. A polysaccharide was obtained by O-deacylation of the LPS followed by nitrous acid deamination. The derived pentasaccharide and polysaccharide were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the repeating unit of the O-polysaccharide was established: [Carbohydrate structure: see text]. As opposite to most other P. mirabilis O-polysaccharides studied, that of P. mirabilis O20 is neutral. A week serological cross-reactivity was observed between anti-P. mirabilis O20 serum and LPS of a number of Proteus serogroups with known O-polysaccharide structure. The ability of LPS of P. mirabilis O20 to activate the serine protease cascade was tested in Limulus amoebocyte lysate and in human blood plasma and compared with that of P. mirabilis O14a,14c having an acidic O-polysaccharide. The LPS of P. mirabilis O20 was found to be less active in both assays than the LPS of P. mirabilis O14a,14c and, therefore, the structurally variable O-polysaccharide may influenced the biological activity of the conserved lipid A moiety of the LPS.  相似文献   

16.
The following structure of the pentasaccharide repeating unit of an acidic O-polysaccharide of Hafnia alvei PCM 1529 was established by sugar and methylation analyses along with 1D and 2D 1H and 13C NMR spectroscopy: [Carbohydrate structure: see text].  相似文献   

17.
The O-polysaccharide of Mesorhizobium loti HAMBI 1148 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation, and 1H and 13C NMR spectroscopies, including 2D 1H/1H COSY, TOCSY, ROESY, and H-detected 1H/13C HSQC experiments. The O-polysaccharide was found to have a branched hexasaccharide-repeating unit of the following structure:where 2-acetamido-2-deoxy-4-O-methyl-d-glucose (d-GlcNAc4Me) and methyl group on 2-substituted d-rhamnose (Me) shown in italics are present in ∼80% and ∼40% repeating units, respectively. Similar studies of the O-polysaccharide from Mesorhizobium amorphae ATCC 19655 by sugar analysis and NMR spectroscopy revealed essentially the same structure but a higher content of 3-O-methyl-d-rhamnose (∼70%).  相似文献   

18.
The O-polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O57:H29. Studies by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments, showed that the polysaccharide contains an amide of D-galacturonic acid with L-alanine and has the following pentasaccharide repeating unit: [formula: see text]  相似文献   

19.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia alcalifaciens O32 and studied by sugar and methylation analyses, solvolysis with triflic acid, 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, ROESY, H-detected 1H,13C HSQC and HMBC experiments. It was found that the polysaccharide has a branched tetrasaccharide repeating unit containing 2-acetamido-3-O-[(S)-1-carboxyethyl]-2-deoxy-D-glucose (D-GlcNAc3Slac, N-acetylisomuramic acid) with the following structure: [STRUCTURE: SEE TEXT]. Serological studies with O-antisera showed antigenic relationships between P. alcalifaciens O32 and O29 as well as several other Providencia and Proteus strains sharing putative epitopes on the O-polysaccharides.  相似文献   

20.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis TG 332 strain. The following structure of the O-polysaccharide was determined by chemical methods along with NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H, 13C HMQC experiments: [see equation in text]. The O-polysaccharide studied has a unique structure among Proteus O-antigens. Accordingly, P. mirabilis TG 332 is serologically separate, and we propose to classify this strain into a new Proteus serogroup, O50. The nature of minor epitopes that provide a cross-reactivity of P. mirabilis TG 332 O-antiserum with the LPS of P. mirabilis O30 and Proteus penneri 34 (O60) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号