首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Ion channels are proteins expressed in the plasma membrane of electrogenic cells. In the zygote and blastomeres of the developing embryo, electrical modifications result from ion currents that flow through these channels. This phenomenon implies that ion current activity exerts a specific developmental function, and plays a crucial role in signal transduction and the control of embryogenesis, from the early cleavage stages and during growth and development of the embryo. This review describes the involvement of ion currents in early embryo development, from marine invertebrates to human, focusing on the occurrence, modulation, and dynamic role of ion fluxes taking place on the zygote and blastomere plasma membrane, and at the intercellular communication between embryo cell stages. Birth Defects Research (Part C) 108:6–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Cellularization of the early Drosophila embryo is a modified form of cytokinesis that gives rise to the blastoderm epithelium through polarized membrane growth. The gene slow-as-molasses encodes a novel protein essential for the formation of a plasma membrane domain that initiates membrane growth during cellularization.  相似文献   

3.
Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces >6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo.  相似文献   

4.
Mitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation, and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small and fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for the mitochondrial fission protein, Drp1 (dynamin-related protein 1), die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion was previously shown to decrease myosin II activity. Drp1 loss also leads to myosin II depletion at the membrane furrow, thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to that in myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos.  相似文献   

5.
K. Katoh  H. Ishikawa 《Protoplasma》1989,150(2-3):83-95
Summary The distribution and arrangement of cytoskeletal components in the early embryo ofDrosophila melanogaster were examined by thin-section electron microscopy to elucidate their involvement in the formation of the cellular blastoderm, a process called cellularization. During the final nuclear division in the cortex of the syncytial blastoderm bundles of astral microtubules were closely associated with the surface plasma membrane along the midline where a new gutter was initiated. Thus the new gutter together with the pre-formed ones compartmentalized the embryo surface to reflect underlying individual daughter nuclei. Subsequently such gutters became deeper by further invagination of the plasma membrane between adjacent nuclei to form so-called cleavage furrows. Nuclei simultaneously elongated in the direction perpendicular to the embryo surface and numerous microtubules from the centrosomes ran longitudinally between the nucleus and the cleavage furrow. Microtubules often appeared to be in close association with the nuclear envelope and the cleavage furrow membrane. The plasma membrane at the advancing tip of the furrow was always undercoated with an electron-dense layer, which could be shown to be mainly composed of 5–6 nm microfilaments. These microfilaments were decorated with H-meromyosin to be identified as actin filaments. As cleavage proceeded, each nucleus with its perikaryon became demarcated by the furrow membrane, which then extended laterally to constrict the cytoplasmic connection between each newly forming cell and the central yolk region. The cytoplasmic strand thus formed possessed a prominent circular bundle of microfilaments which were also decorated with H-meromyosin and bidirectionally arranged, similar in structure to the contractile ring in cytokinesis. These observations strongly suggest that both microtubules and actin filaments play a crucial role in cellularization ofDrosophila embryos.  相似文献   

6.
Dramatic changes in the localization of conventional non-muscle myosin characterize early embryogenesis in Drosophila melanogaster. During cellularization, myosin is concentrated around the furrow canals that form the leading margin of the plasma membrane as it plunges inward to package each somatic nucleus into a columnar epithelial cell. During gastrulation, there is specific anti-myosin staining at the apical ends of those cells that change shape in regions of invagination. Both of these localizations appear to result from a redistribution of a cortical store of maternal myosin. In the preblastoderm embryo, myosin is localized to the egg cortex, sub-cortical arrays of inclusions, and, diffusely, the yolk-free periplasm. At the syncytial blastoderm stage, myosin is found within cytoskeletal caps associated with the somatic nuclei at the embryonic surface. Following the final syncytial division, these myosin caps give rise to the myosin rings observed during cellularization. These distributions are observed with both whole immune serum and affinity-purified antibodies directed against Drosophila non-muscle myosin heavy chain. They are not detected in embryos stained with anti-Drosophila muscle myosin antiserum or with preimmune serum. Although immunolocalization can only suggest possible function, these myosin localizations and the coincident changes in cell morphology are consistent with a key role for non-muscle myosin in powering cellularization and gastrulation during embryogenesis.  相似文献   

7.
Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis.  相似文献   

8.
Evans MM 《The Plant cell》2007,19(1):46-62
Angiosperm embryo sac development begins with a phase of free nuclear division followed by cellularization and differentiation of cell types. The indeterminate gametophyte1 (ig1) gene of maize (Zea mays) restricts the proliferative phase of female gametophyte development. ig1 mutant female gametophytes have a prolonged phase of free nuclear divisions leading to a variety of embryo sac abnormalities, including extra egg cells, extra polar nuclei, and extra synergids. Positional cloning of ig1 was performed based on the genome sequence of the orthologous region in rice. ig1 encodes a LATERAL ORGAN BOUNDARIES domain protein with high similarity to ASYMMETRIC LEAVES2 of Arabidopsis thaliana. A second mutant allele of ig1 was identified in a noncomplementation screen using active Mutator transposable element lines. Homozygous ig1 mutants have abnormal leaf morphology as well as abnormal embryo sac development. Affected leaves have disrupted abaxial-adaxial polarity and fail to repress the expression of meristem-specific knotted-like homeobox (knox) genes in leaf primordia, causing a proliferative, stem cell identity to persist in these cells. Despite the superficial similarity of ig1-O leaves and embryo sacs, ectopic knox gene expression cannot be detected in ig1-O embryo sacs.  相似文献   

9.
The relationship between changes in soluble protein, hexose sugar, total lipid concentration, and osmotic potential occurring in gametophytic supernatant of Pinus resinosa Ait. during in vivo embryogenesis was measured. The effects of varying sucrose levels of culture medium on in vitro embryo and gametophyte development were examined. Increases in embryo volume, and fresh and dry weight of the female gametophyte during in vivo embryogenesis coincide with increasing levels of soluble protein, hexose sugar, and total lipid in the gametophytic supernatant. In contrast, osmotic potential of the supernatant increased only slightly between the zygote and proembryo stages of embryo development, and remained constant thereafter. Gametophytes plus embryos grown in vitro achieved dry weights approaching those of in ovulo gametophytes on media containing levels of sucrose up to 21%. Gametophytes on media with sucrose concentrations up to 21% also resembled normal in ovulo gametophytes in appearance. However, embryo development appeared to be suspended on treatment media containing from 9% to 21% sucrose, while embryos degenerated on media with constant sucrose levels of 3% and 6%. A treatment medium containing approximately 12% sucrose would provide an osmotic environment that duplicates that found in ovulo. While greater sucrose levels promoted more normal gametophyte development in Pinus resinosa, we failed to achieve complete development of the embryo in vitro. Conclusions and implications drawn from these results are discussed.  相似文献   

10.
Glucose metabolism plays an essential role in the physiology and development of almost all living organisms. In the present study we investigated glucose metabolism during the embryogenesis of the hard tick Boophilus microplus. An increase in glucose and glycogen content during the embryonic development of B. microplus was detected and shown to be due to the high enzyme activity of both gluconeogenesis and glycolytic pathways. Glucose 6-phosphate (G-6P), formed by hexokinase, is driven mainly to pentose-phosphate pathway, producing fundamental substrates for cellular biosynthesis. We detected an increase in glucose 6-phosphate dehydrogenase and pyruvate kinase activities after embryo cellularization. Accumulation of key metabolites such as glycogen and glucose was monitored and revealed that glycogen content decreases from day 1 up to day 6, as the early events of embryogenesis take place, and increases after the formation of embryo cellular blastoderm on day 6. Glucose and guanine (a sub-product of amino acids degradation in arachnids) accumulate almost concomitantly. The activity of phosphoenolpyruvate carboxykinase was increased after embryo cellularization. Taken together these data indicate that glycogen and glucose, formed during B. microplus embryogenesis after blastoderm formation, are produced by intense gluconeogenesis.  相似文献   

11.
Drosophila spectrin: the membrane skeleton during embryogenesis   总被引:12,自引:9,他引:3       下载免费PDF全文
《The Journal of cell biology》1989,108(5):1697-1709
The distribution of alpha-spectrin in Drosophila embryos was determined by immunofluorescence using affinity-purified polyclonal or monoclonal antibodies. During early development, spectrin is concentrated near the inner surface of the plasma membrane, in cytoplasmic islands around the syncytial nuclei, and, at lower concentrations, throughout the remainder of the cytoplasm of preblastoderm embryos. As embryogenesis proceeds, the distribution of spectrin shifts with the migrating nuclei toward the embryo surface so that, by nuclear cycle 9, a larger proportion of the spectrin is concentrated near the plasma membrane. During nuclear cycles 9 and 10, as the nuclei reach the cell surface, the plasma membrane-associated spectrin becomes concentrated into caps above the somatic nuclei. Concurrent with the mitotic events of the syncytial blastoderm period, the spectrin caps elongate at interphase and prophase, and divide as metaphase and anaphase progress. During cellularization, the regions of spectrin concentration appear to shift: spectrin increases near the growing furrow canal and concomitantly increases at the embryo surface. In the final phase of furrow growth, the shift in spectrin concentration is reversed: spectrin decreases near the furrow canal and concomitantly increases at the embryo surface. In gastrulae, spectrin accumulates near the embryo surface, especially at the forming amnioproctodeal invagination and cephalic furrow. During the germband elongation stage, the total amount of spectrin in the embryo increases significantly and becomes uniformly distributed at the plasma membrane of almost all cell types. The highest levels of spectrin are in the respiratory tract cells; the lowest levels are in parts of the forming gut. The spatial and temporal changes in spectrin localization suggest that this protein plays a role in stabilizing rather than initiating changes in structural organization in the embryo.  相似文献   

12.
柽柳胚和胚乳发育的观察   总被引:1,自引:0,他引:1  
利用常规石蜡制片技术,对柽柳(Tamarix chinensis Lour.)胚和胚乳的发育过程进行了观察。结果表明,胚发育属茄型,其基细胞先行纵裂。胚柄基部发育迅速,具吸器作用,球形胚期胚柄最为发达,其细胞质丰富,贮藏淀粉类物质,至晚心形胚期胚柄依然存在。助细胞被受精产生多胚现象。胚乳发育属核型,初生胚乳核常常晚于合子分裂,胚乳核的分裂速度慢于胚体细胞的分裂速度。当胚乳游离核为 32个时,以自由生长细胞壁的方式进行胚乳细胞化。胚乳细胞进一步增殖极少。珠心细胞只有两层,细胞核大,胞质丰富,内含贮藏物质,至心形胚期逐渐解体。  相似文献   

13.
Echinonectin (EN) is a galactose-binding lectin present in eggs and embryos of the sea urchin Lytechinus variegatus . Recent studies have suggested that EN is a hyaline layer protein that may function as a substrate adhesion molecule (SAM) during development. We have used monoclonal and affinity-purified polyclonal antibodies that specifically recognize this protein to determine its spatial and temporal expression during embryogenesis. EN is stored in granules or vesicles in the unfertilized egg. After fertilization, these granules are rapidly redistributed to the apical cytoplasm of the zygote. Our results show that at subsequent stages of development the lectin is expressed by cells of all three germ layers, including cells of the developing gut, coelomic pouches, and ectoderm, and by both primary and secondary mesenchyme cells. In contrast to previous observations based solely upon light level immunofluorescent staining, immunoelectron microscopy demonstrates that EN is localized in intracellular, membrane-bounded vesicles. In epithelial cell types these vesicles have a highly polarized distribution and are found in the apical cortical cytoplasm. In mesenchyme cells the distribution of EN-containing vesicles is not obviously polarized. Steady-state levels of EN protein in the embryo remain almost constant from fertilization to the pluteus larva stage, Metabolic labeling studies show that synthesis of EN in L. variegatus begins immediately after fertilization and continues throughout embryogenesis. Monospecific antibodies raised against L. variegatus EN have also been used to determine whether this lectin is expressed in other echinoid species.  相似文献   

14.
Anemarrhena asphodeloides Bunge is the only species of Anemarrhena in Liliaceae, which possesses three stamens. The flowers in this species have following features: (1) Crystalliferous cells are present in the perianth and the filament. (2) Epidermal cells of filaments and the inner perianth appears verruciform. (3) In longitudinal section, a number of the multicellular hairs were found in the apex of the inner perianth. The above characteristics of Anemarrhena are possibly important and differ from those of the other genera in Liliaceae. The main aim of the present paper is to deal with the female gametophyte and embryogenesis in Anemarrhena. The development of embryo sac is similar to that of Ornithogalum (Tilton et al., 1981), belonging to the Polygonum type, but there is a short embryo sac haustorium at the antipodal end. Before fertilization the two polar muclei fuse into a secondary nucleus. The filiform apparatus was found in the synergid. The early development of proembryo in Anemarrhena is similar to that of Najas (Hu, 1982). After fertilization the zygote has a short stage of dormancy. When the endosperm has 12-16 free nuclei, the first division of the zygote takes place, forming an apical cell and a basal cell. Then the apical cell undergoes transversal divisions 2 or 3 times, forming a line of three to four cells. The basal cell usually does not further divide. The endosperm formation in Anemarrhena is the Helobial type. The small chalazal chamber is usually ephemeral and 2-4-nucleate, while the large micropylar one may be a multi-nucleate before wall formation.  相似文献   

15.
The molecular identification and characterization of the patched-related (ptr) gene and protein in Apis mellifera and Drosophila melanogaster are reported. Ptr proteins are closely related in predicted topology and domain organization to the protein encoded by the Drosophila segment polarity gene patched. Ptrs have 12 potential transmembrane domains arranged in two sets of 1+5 membrane-spanning segments containing a conserved sterol-sensing domain (SSD) and functional GxxxD and PPXY motifs. Phylogenetic analysis showed that Ptrs belong to a previously uncharacterized class of insect proteins that share a high level of sequence identity. Analysis using quantitative real-time polymerase chain reaction (qPCR) indicates that ptr gene is preferentially expressed during embryo stages of A. mellifera development; interestingly, this pattern of temporal expression was also observed for the D. melanogaster homologue, suggesting that these proteins might be involved in embryo morphogenesis. To understand Ptr function at the molecular level, we investigated the subcellular distribution of DmPtr. We have shown by biochemical analysis that DmPtr protein is tightly associated with membranes. Consistently, Ptr immunoreactivity appears to be localized at the sites of membrane furrow formation during cellularization of D. melanogaster embryos. These studies indicated that Ptrs belong to a previously uncharacterized class of insect transmembrane proteins that share a high level of sequence identity. Our analysis of ptr gene expression and protein localization suggest that Ptr might fulfil a developmental role by participating in processes that require growth and stabilization of plasma membrane.  相似文献   

16.
Glucose metabolism plays an essential role in the physiology and development of almost all living organisms. In the present study we investigated glucose metabolism during the embryogenesis of the hard tick Boophilus microplus. An increase in glucose and glycogen content during the embryonic development of B. microplus was detected and shown to be due to the high enzyme activity of both gluconeogenesis and glycolytic pathways. Glucose 6-phosphate (G-6P), formed by hexokinase, is driven mainly to pentose-phosphate pathway, producing fundamental substrates for cellular biosynthesis. We detected an increase in glucose 6-phosphate dehydrogenase and pyruvate kinase activities after embryo cellularization. Accumulation of key metabolites such as glycogen and glucose was monitored and revealed that glycogen content decreases from day 1 up to day 6, as the early events of embryogenesis take place, and increases after the formation of embryo cellular blastoderm on day 6. Glucose and guanine (a sub-product of amino acids degradation in arachnids) accumulate almost concomitantly. The activity of phosphoenolpyruvate carboxykinase was increased after embryo cellularization. Taken together these data indicate that glycogen and glucose, formed during B. microplus embryogenesis after blastoderm formation, are produced by intense gluconeogenesis.  相似文献   

17.
The Platanaceae are an early derived eudicot lineage and therefore occupy a key position for understanding reproductive character diversification associated with the early evolutionary radiation of flowering plants. We conducted an embryological study of Platanus racemosa in order to provide critical data on defining angiosperm reproductive characters for this important group. Female gametophyte development is monosporic. Embryogenesis occurs in a series of stages including zygote elongation and division, development of a linear proembryo, formation of the embryo proper, histogenesis, organogenesis, and growth. Endosperm development is a complex process that includes four distinct phases: free nuclear proliferation, cellularization of the chalazal zone, centripetal cellularization of the micropylar zone, and cellular differentiation and growth. Only the outer endosperm layer persists at seed maturity. Our findings differ significantly from previously published reports for Platanus, in which endosperm development was described as ab initio cellular. A comparison of endosperm development in Platanus with several closely and distantly related free nuclear taxa reveals considerable developmental variability, consistent with a hypothesis of multiple origins of free nuclear endosperm in angiosperms. Our analysis indicates that much remains to be learned about embryology in basal angiosperms. Additional developmental and comparative studies will likely reveal critical insights into the early evolution of flowering plants.  相似文献   

18.
Drosophila melanogaster cellularization is a dramatic form of cytokinesis in which a membrane furrow simultaneously encapsulates thousands of cortical nuclei of the syncytial embryo to generate a polarized cell layer. Formation of this cleavage furrow depends on Golgi-based secretion and microtubules. During cellularization, specific Golgi move along microtubules, first to sites of furrow formation and later to accumulate within the apical cytoplasm of the newly forming cells. Here we show that Golgi movements and furrow formation depend on cytoplasmic dynein. Furthermore, we demonstrate that Lava lamp (Lva), a golgin protein that is required for cellularization, specifically associates with dynein, dynactin, cytoplasmic linker protein-190 (CLIP-190) and Golgi spectrin, and is required for the dynein-dependent targeting of the secretory machinery. The Lva domains that bind these microtubule-dependent motility factors inhibit Golgi movement and cellularization in a live embryo injection assay. Our results provide new evidence that golgins promote dynein-based motility of Golgi membranes.  相似文献   

19.
This comprehensive study of early embryology in Ceratopteris richardii combines light microscopy with the first ultrastructural evaluation of any pteridophyte embryo. Emphasis is placed on ontogeny of the foot and placental transfer cells. The embryology of C. richardii shares many similarities with that of other polypodiacious ferns while exhibiting distinctive division patterns. Formative embryonic stages have been reconstructed into three-dimensional models for ease of interpretation. The zygote divides perpendicular to the gametophyte plane and anterioposterior axis. This division establishes a prone embryological habit that maximizes rapid independent establishment of a leaf-root axis in a cordate gametophyte. After the formation of a globular eight-celled stage, initials of the first leaf, and root and shoot apical meristems are defined early by discrete formative divisions. Concomitantly, the foot expands and differentiates to transport nutrients from the gametophyte for the developing embryonic organs. Transfer cell wall ingrowth deposition begins in the gametophyte placental cells before the adjacent sporophyte cells just after the eight-celled stage. These observations provide an anatomical framework for future comparative developmental genetic studies of embryogenesis in free-sporing plants.  相似文献   

20.
Seeds are dormant and desiccated structures, filled with storage products to be used after germination. These properties are determined by the maturation program, which starts, in Arabidopsis thaliana, mid‐embryogenesis, at about the same time and developmental stage in all the seeds in a fruit. The two factors, chronological and developmental time, are closely entangled during seed development, so their relative contribution to the transition to maturation is not well understood. It is also unclear whether that transition is determined autonomously by each seed or whether it depends on signals from the fruit. The onset of maturation follows the cellularization of the endosperm, and it has been proposed that there exists a causal relationship between both processes. We explored all these issues by analyzing markers for maturation in Arabidopsis mutant seeds that develop at a slower pace, or where endosperm cellularization happens too early, too late, or not at all. Our data show that the developmental stage of the embryo is the key determinant of the initiation of maturation, and that each seed makes that transition autonomously. We also found that, in contrast with previous models, endosperm cellularization is not required for the onset of maturation, suggesting that this transition is independent of the hexose/sucrose ratio in the seed. Our observations indicate that the mechanisms that control endosperm cellularization, embryo growth, and embryo maturation act independently of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号