共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes of the Escherichia coli pur regulon are negatively controlled by a repressor-operator interaction. 总被引:3,自引:11,他引:3 下载免费PDF全文
Fusions of lacZ were constructed to genes in each of the loci involved in de novo synthesis of IMP. The expression of each pur-lacZ fusion was determined in isogenic purR and purR+ strains. These measurements indicated 5- to 17-fold coregulation of genes purF, purHD, purC, purMN, purL, and purEK and thus confirm the existence of a pur regulon. Gene purB, which encodes an enzyme involved in synthesis of IMP and in the AMP branch of the pathway, was not regulated by purR. Each locus of the pur regulon contains a 16-base-pair conserved operator sequence that overlaps with the promoter. The purR product, purine repressor, was shown to bind specifically to each operator. Thus, binding of repressor to each operator of pur regulon genes negatively coregulates expression. 相似文献
2.
Robert Shoeman Betty Redfield Timothy Coleman Nathan Brot Herbert Weissbach Ronald C. Greene Albert A. Smith Isabelle Saint-Girons Mario M. Zakin Georges N. Cohen 《BioEssays : news and reviews in molecular, cellular and developmental biology》1985,3(5):210-213
The genes involved in methionine biosynthesis are scattered throughout the Escherichia coli chromosome and are controlled in a similar but not coordinated manner. The product of the metJ gene and S-adenosylmethionine are involved in the repression of this ‘regulon’. 相似文献
3.
Regulation of Escherichia coli pyrC by the purine regulon repressor protein. 总被引:1,自引:10,他引:1 下载免费PDF全文
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides. 相似文献
4.
5.
6.
7.
8.
Regulation of components of the Pseudomonas aeruginosa phosphate-starvation-inducible regulon in Escherichia coli 总被引:4,自引:2,他引:4
Plasmids pPBP and pRS-XP containing the cloned genes for the Pseudomonas aeruginosa phosphate-starvation-inducible periplasmic phosphate-binding protein and outer membrane porin P (oprP), respectively, were introduced into various Escherichia coli Pho-regulon regulatory mutants. Using Western immunoblots and specific antisera, the production of both gene products was observed to be under the control of regulatory elements of the E. coli Pho regulon. Sequencing of the region upstream of the translational start site of the oprP gene revealed a 'Pho box' with strong homology to the E. coli consensus 'Pho box', the putative binding site of the PhoB activator. Since P. aeruginosa and E. coli belong to different families and have quite different GC contents, these data suggest strong evolutionary conservation of regulatory elements of the Pho regulon. 相似文献
9.
Regulation of Escherichia coli K-12 hexuronate system genes: exu regulon. 总被引:11,自引:9,他引:2 下载免费PDF全文
Two types of Escherichia coli K-12 regulatory mutants, partially or totally negative for the induction of the five catabolic enzymes (uronic isomerase, uxaC; altronate oxidized nicotinamide adenine dinucleotide: uxaB; mannonate hydrolyase, uxuA) and the transport system (exuT) of the hexuronate-inducible pathway, were isolated and analyzed enzymatically. Hexuronate-catabolizing revertants of the negative mutants showed a constitutive synthesis for some or all of these enzymes. Negative and constitutive mutations were localized in the same genetic locus, called exuR, and the following order for the markers situated between the min 65 and 68 was determined: argG--exuR--exuT--uxaC--uxaA--tolC. The enzymatic characterization of the pleiotropic negative and constitutive mutants of the exuR gene suggests that the exuR regulatory gene product exerts a specific and total control on the three exuT, uszB, and uxaC-uxaA operons of the galacturonate pathway and a partial control on the uxuA-uxuB operon of the glucuronate pathway. The analysis of diploid strains conatining both the wild type and a negative or constitutive allele of the exuR gene, as well as the analysis of thermosensitive mutants of the exuR gene, was in agreement with a negative regulatory mechanism for the control of the hexuronate system. 相似文献
10.
Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli. 总被引:20,自引:22,他引:20 下载免费PDF全文
The high-temperature production (HTP) regulon of Escherichia coli consists of a set of operons that are induced coordinately by a shift to a high temperature under the control of a single chromosomal gene called htpR or hin. To identify more components of this regulon, the rates of synthesis of many polypeptides resolved on two-dimensional polyacrylamide gels were measured in various strains by pulse-labeling after a temperature shift-up. A total of 13 polypeptides were found to be heat inducible only in cells bearing a normal htpR gene on the chromosome or on a plasmid; on this basis these polypeptides were designated products of the HTP regulon. Several hybrid plasmids that contain segments of the E. coli chromosome in the 75-min region were found to carry the htpR gene. A restriction map of this region was constructed, and selected fragments were subcloned and tested for the ability to complement an htpR mutant. The polypeptides encoded by these fragments were detected by permitting expression in maxicells, minicells, and chloramphenicol-treated cells. Complementation was accompanied by production of a polypeptide having a molecular weight of approximately 33,000. This polypeptide, designated F33.4, was markedly reduced in amount in an htpR mutant expected to contain very little htpR gene product. Polypeptide F33.4 is postulated to be the product of htpR and to be an effector that controls heat induction of the HTP regulon. 相似文献
11.
12.
13.
The maltose regulon consists of four operons that direct the synthesis of proteins required for the transport and metabolism of maltose and maltodextrins. Expression of the mal genes is induced by maltose and maltodextrins and is dependent on a specific positive regulator, the MalT protein, as well as on the cyclic AMP-catabolite gene activator protein complex. In the absence of an exogenous inducer, expression of the mal regulon was greatly reduced when the osmolarity of the growth medium was high; maltose-induced expression was not affected, and malTc-dependent expression was only weakly affected. Mutants lacking MalK, a cytoplasmic membrane protein required for maltose transport, expressed the remaining mal genes at a high level, presumably because an internal inducer of the mal system accumulated; this expression was also strongly repressed at high osmolarity. The repression of mal regulon expression at high osmolarity was not caused by reduced expression of the malT, envZ, or crp gene or by changes in cellular cyclic AMP levels. In strains carrying mutations in genes encoding amylomaltase (malQ), maltodextrin phosphorylase (malP), amylase (malS), or glycogen (glg), malK mutations still led to elevated expression at low osmolarity. The repression at high osmolarity no longer occurred in malQ mutants, however, provided that glycogen was present. 相似文献
14.
Regulation of the pho regulon in Escherichia coli K-12. Genetic and physiological regulation of the positive regulatory gene phoB 总被引:25,自引:0,他引:25
phoB is a positive regulatory gene for phoA, which codes for alkaline phosphatase, as well as for other genes belonging to the phosphate (pho) regulon whose expression is inducible by phosphate limitation in Escherichia coli. A hybrid plasmid that contains a phoB-lacZ fused gene was constructed in vitro. This plasmid enabled us to study phoB gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the phosphate regulon, and phoB gene expression in these strains was studied under limited and excess phosphate conditions. It was found that the regulation of phoB expression was very similar to that of phoA expression. Expression of both genes was induced by phosphate starvation. Both genes were constitutively expressed in phoR, phoS, phoT and phoU mutants and were not expressed in a phoR-phoM double mutant. The implications of these findings for the regulatory mechanism of the pho regulon are discussed. 相似文献
15.
16.
Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. 总被引:32,自引:2,他引:32 下载免费PDF全文
The regulatory region of the cya gene from Escherichia coli has been characterized by nucleotide sequence analysis and genetic approaches. Two promoters, P1 and P2, organized in that order with respect to the beginning of the cya open reading frame, were identified. Using cya-lac operon and protein fusions, it was possible to show that both promoters are active in vivo. P1 activity seemed sensitive to catabolite repression whereas activity of the stronger promoter, P2, did not respond to inhibition by glucose. No effect of cAMP or its receptor, catabolite activator protein (CAP), could be found although the DNA sequence reveals a consensus CAP site downstream of P2. The 548 nucleotides situated at the 3' end of the sequence carry an open reading frame which can tentatively be assigned to the beginning of adenylate cyclase. Among noteworthy features of the corresponding sequence are an UUG codon as the putative start site of cyclase, and a long hydrophobic stretch of amino acids resembling leader peptides in secreted or membrane proteins. 相似文献
17.
18.
19.
Regulation of the phosphate regulon in Escherichia coli K-12: regulation of the negative regulatory gene phoU and identification of the gene product. 总被引:1,自引:4,他引:1 下载免费PDF全文
The phoU gene is one of the negative regulatory genes of the pho regulon of Escherichia coli. The DNA fragment carrying phoU has been cloned on pBR322 (Amemura et al., J. Bacteriol. 152:692-701, 1982). Further subcloning, Tn1000 insertion inactivation, and complementation tests localized the phoU gene within a 1.1-kilobase region on the cloned DNA fragment. The gene product of phoU was identified by the maxicell method as a protein with an approximate molecular weight of 27,000. A hybrid plasmid that contains a phoU'-lac'Z fused gene was constructed in vitro. This plasmid enabled us to study phoU gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the pho regulon, and phoU gene expression in these strains was studied under limited and excess phosphate conditions. It was found that phoU is expressed at a higher level when the cells are cultured under the excess phosphate condition. The higher phoU expression was observed in a phoB mutant and a phoR-phoM double mutant. The implications of these findings for the regulation of pho genes are discussed. 相似文献
20.
The complex terminator region of the Escherichia coli rrnB gene was analyzed by subcloning the terminators T1 and T2 and the inverted repeats IR1 and IR2 individually, or in various combinations, in a normal or inverted orientation into a terminator probe vector. The in vivo terminating efficiency was assayed by measuring the galactokinase activity encoded by the downstream galK gene. Termination efficiencies of all fragments were compared in two constructs, differing in the presence or absence of readthrough translation over the investigated terminator signal. The following main conclusions were drawn. (a) T1 and T2 are both efficient terminators in isolated forms. (b) IR1 and IR2 have some terminating effect (much lower than the proper terminators), especially in the inverted orientation. Their presence modifies the effect of the proper terminators in a quite unpredictable way, especially if these regions are translated. (c) The terminators are not symmetrical; in the inverted orientation T1 is practically inactive and T2 termination is reduced. (d) Translation radically decreases the efficiency of the terminators. (e) Several sequences in the rrnB gene, upstream of the terminator region (one in the 16S RNA and one in the 5S RNA coding region), are very efficient in vivo terminators in the inverted orientation. 相似文献