首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compared the total single-copy sequences transcribed as nuclear RNA in blastula and pluteus stage embryos of the sea urchin Tripneustes gratilla by hybridization of excess nuclear RNA with purified radioactive single-copy DNA. The kinetics of hybridization of either blastula or pluteus nuclear RNA with single-copy DNA show a single pseudo-first-order reaction with 34% of the single-copy genome. From the rate of the reaction and the purity of the nuclear RNA, it can be estimated that the reacting RNAs are present on the average at a concentration of one molecule per 14 nuclei. A mixture of blastula and pluteus RNA also hybridizes with 34% of the single-copy genome, indicating that the total complexity of RNAs transcribed at both stages is no greater than transcribed at each stage alone. The identity of the sequences transcribed by blastula and pluteus embryos was further examined by fractionation of the labeled DNA into sequences complementary and not complementary to pluteus RNA. This was achieved by hybridization of single-copy DNA to high pluteus RNA Cot, and separation of the hybridized and nonhybridized DNA on hydroxylapatite. Using either the DNA complementary or noncomplementary with pluteus RNA, essentially identical amounts of RNA:DNA hybrids are formed at high RNA Cot with blastula or pluteus RNA. Gross changes in the total RNA sequences transcribed do not appear to be involved in the developmental changes between blastula and pluteus, even though 45% of the mRNA sequences change between these two stages (Galau et al., 1976).  相似文献   

2.
A simple method for selection of RNA-DNA hybrids has been developed and applied to the purification of adenovirus-specific messenger RNA. Cytoplasmic RNA prepared from adenovirus type 2 (ad2)-infected HeLa cells or from an ad2-transformed rat cell line was hybridized in solution to the complementary strands of ad2 DNA. The hybridization mixture was subsequently fractionated by chromatography on a Sepharose 2B column. The intact probe DNA as well as the RNA-DNA hybrids are excluded from the gel matrix and elute with the void volume. Nonhybridized RNA, in contrast, is included into the gel matrix and elutes as a broad peak well separated from the excluded fractions. Fractions corresponding to the void volume, were collected and the RNA-DNA hybrids were denatured in 90% formamide. The selected RNA was separated from the DNA by affinity chromatography on poly(U)-Sepharose. Restriction endonuclease fragments of DNA with a large enough size to make them excluded from the agarose column were also used for hybridization. In these experiments hybridizations were carried out under conditions which would allow R-loop formation (Thomas, M., White, R.L., and Davis, R.W. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 2294-2298) and the hybridized RNA was separated from unhybridized RNA by Sepharose chromatography. The validity of the method was demonstrated by programming an in vitro protein-synthesizing system with selected RNA.  相似文献   

3.
We describe a method for hybridization of cDNA probes to RNA directly in agarose gels which provides a practical alternative to methods involving transfer of the RNA out of the gel. Total cellular RNA is subjected to electrophoresis in agarose gels containing methylmercuric hydroxide as the denaturing agent. After removal of the methylmercuric hydroxide, the gel is dried and 32P-labeled DNA probes are hybridized to the immobilized RNA. This method is more economical in time and expense than methods involving transfer of the RNA out of the gel, while maintaining a level of sensitivity comparable to other procedures.  相似文献   

4.
A new method of membrane-bound DNA × DNA hybridization was devised to accommodate the study of small quantities of DNA obtained from museum specimens for phylogeny reconstruction. Membranebound, single-stranded target genomic DNAs were competitively hybridized with a total genomic DNA probe to form hybrid duplexes required for the DNA dissociation experiments. We compared the thermal elution profiles derived from dissociating duplexes made with probes of whole genomic, single-copy, and repetitive DNA, as well as solution DNA × DNA hybridization using sc tracer. Quantitatively, pairwise indices of genetic distance derived from duplexes made with genomic probes depended entirely on hybridization of repetitive sequences, but a parallel set of experiments using repetitive and sc probes produced qualitatively similar results. The indices of genetic distance generated by the membrane-bound hybrids form an internally consistent, resolved tree which is in agreement with the solution DNA × DNA hybridization trials and traditional views of the phylogeny of the taxa under study.Correspondence to: P. Houde  相似文献   

5.
Hybridization of labeled RNA to DNA in agarose gels.   总被引:40,自引:5,他引:35       下载免费PDF全文
Specific DNA restriction endonuclease fragments can be identified after electrophoresis in agarose gels by hybridization in the gel (in situ) to radioactive homologous RNA. RNA-DNA hybrids are detected by autoradiography of the gel. Comparison of band patterns of the autoradiogram and the ethidium bromide stained gel allows the identification of the DNA fragment which is complementary to the RNA probe. The technique is rapid, easy and inexpensive. It is sensitive enough to detect individual genes in a mixture of fragments produced by restriction enzyme digestion of complex cellular DNA. We have used this technique to determine which of the Hin III and Eco R1 fragments of phi80d3ilv+su+7 and E. coli DNAs contain the 5S, 16S and 23S ribosomal RNA (rRNA) genes of E. coli.  相似文献   

6.
7.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

8.
9.
植原体DNA提取方法的改良   总被引:8,自引:0,他引:8  
在总结多种植原体DNA提取方法的基础上 ,发展了一种提取植原体DNA新方法。用此方法提取的DNA经琼脂糖凝胶电泳检测到大于 15kb的DNA主带 ,基本无DNA碎带 ,不用RNase处理 ,也无RNA干扰 ,OD2 60 / 2 80 值显示产物纯度较高 ,无需任何处理 ,即可以作为模板扩增  相似文献   

10.
The extent of evolutionary conservation of DNA complimentary to RNA stored in the mature oocyte of the sea urchin S. purpuratus has been assessed. To do this, such DNA was hybridized with total genomic DNA of S. purpuratus and S. franciscanus and the thermal stability of the resultant duplexes was measured by two methods. In the first method, the duplexes were bound to hydroxylapatite and thermally eluted; the difference in thermal stability between homologous and heterologous duplexes averaged 6.9 degrees C in duplicate determinations. In the second experiment, the same hybrids were thermally melted in 2.4M tetraethylammonium chloride, then assayed with S1 nuclease; the difference in thermal stability of homologous and heterologous duplexes was 4.8 degrees C. Either value is significantly lower than the divergence of total single-copy DNA among these species as measured by the same techniques. This demonstrates that DNA sequences complimentary to maternal RNA are conserved during evolution, and thus that a high fraction of them are likely to be physiologically functional.  相似文献   

11.
One-hour downward alkaline capillary transfer for blotting of DNA and RNA.   总被引:35,自引:0,他引:35  
The downward alkaline capillary transfer of DNA and RNA from agarose gel to a hybridization membrane was performed using a transfer solution containing 3 M NaCl and 8 mM NaOH. Under mild alkaline conditions, DNA and RNA were completely eluted from the agarose gel and bound to a hybridization membrane within 1 h. On the basis of this new method of transfer a blotting protocol, downward alkaline blotting, was elaborated. It provides a fast and efficient alternative to commonly used Southern and Northern blotting protocols. The downward alkaline blotting of DNA and RNA can be completed in 2.5 and 1.5 h, respectively, and can be used with both plastic and nitrocellulose membranes. In addition, the downward alkaline blotting protocol allows for a hybridization efficiency of DNA and RNA higher than that of the standard blotting protocols performed at neutral pH.  相似文献   

12.
The methylated DNA immunoprecipitation method (MeDIP) is a genome-wide, high-resolution approach that detects DNA methylation with oligonucleotide tiling arrays or high throughput sequencing platforms. A simplified high-throughput MeDIP assay will enable translational research studies in clinics and populations, which will greatly enhance our understanding of the human methylome. We compared three commercial kits, MagMeDIP Kit TM (Diagenode), Methylated-DNA IP Kit (Zymo Research) and Methylamp™ Methylated DNA Capture Kit (Epigentek), in order to identify which one has better reliability and sensitivity for genomic DNA enrichment. Each kit was used to enrich two samples, one from fresh tissue and one from a cell line, with two different DNA amounts. The enrichment efficiency of each kit was evaluated by agarose gel band intensity after Nco I digestion and by reaction yield of methylated DNA. A successful enrichment is expected to have a 1:4 to 10:1 conversion ratio and a yield of 80% or higher. We also evaluated the hybridization efficiency to genome-wide methylation arrays in a separate cohort of tissue samples. We observed that the MagMeDIP kit had the highest yield for the two DNA amounts and for both the tissue and cell line samples, as well as for the positive control. In addition, the DNA was successfully enriched from a 1:4 to 10:1 ratio. Therefore, the MagMeDIP kit is a useful research tool that will enable clinical and public health genome-wide DNA methylation studies.  相似文献   

13.
Hybridization of nucleic acids directly in agarose gels   总被引:45,自引:0,他引:45  
Nucleic acids, both DNA and RNA, separated on agarose gels can be visualized by direct hybridization of the dried gel with appropriate radioactive probes. This method does not involve the transfer of the nucleic acid from the gel. The method requires less manipulation than other procedures; it is extremely rapid, sensitive, and inexpensive. These attributes make this procedure a valuable alternative or supplement to the commonly used methods for visualization by hybridization of nucleic acids separated on agarose gels.  相似文献   

14.
《Epigenetics》2013,8(1):106-112
The methylated DNA immunoprecipitation method (MeDIP) is a genome-wide, high-resolution approach that detects DNA methylation with oligonucleotide tiling arrays or high throughput sequencing platforms. A simplified high-throughput MeDIP assay will enable translational research studies in clinics and populations, which will greatly enhance our understanding of the human methylome. We compared three commercial kits, MagMeDIP Kit TM (Diagenode), Methylated-DNA IP Kit (Zymo Research) and Methylamp? Methylated DNA Capture Kit (Epigentek), in order to identify which one has better reliability and sensitivity for genomic DNA enrichment. Each kit was used to enrich two samples, one from fresh tissue and one from a cell line, with two different DNA amounts. The enrichment efficiency of each kit was evaluated by agarose gel band intensity after Nco I digestion and by reaction yield of methylated DNA. A successful enrichment is expected to have a 1:4 to 10:1 conversion ratio and a yield of 80% or higher. We also evaluated the hybridization efficiency to genome-wide methylation arrays in a separate cohort of tissue samples. We observed that the MagMeDIP kit had the highest yield for the two DNA amounts and for both the tissue and cell line samples, as well as for the positive control. In addition, the DNA was successfully enriched from a 1:4 to 10:1 ratio. Therefore, the MagMeDIP kit is a useful research tool that will enable clinical and public health genome-wide DNA methylation studies.  相似文献   

15.
We have adapted a subtraction hybridization technique involving photoactivatable biotin, streptavidin binding, and organic extraction for solution hybridization analysis of mammalian genomic DNA. By combining maximal hybridization conditions of high salt, dextran sulfate, and formamide with successive hybridization steps and sequence enrichment by agarose gel electrophoresis, up to 97% of tracer DNA can be reproducibly driven to hybridize with photobiotinylated driver DNA. We demonstrate that the fractionation of hybridized from unhybridized sequences by this technique differs from hydroxyapatite chromatography with respect to the handling of nondenatured tracer, foldback sequences, and tracer-tracer hybrids. Strategies are presented to control the contribution of these species to the final subtracted product thereby making this technology a useful adjunct to solution hybridization approaches such as deletion cloning.  相似文献   

16.
We have developed an X-irradiation:cell fusion procedure that segregates segments of human chromosomes lacking selectable markers and have used this approach to construct somatic cell hybrids retaining fragments of human chromosome 4 as the only human material. To identify hybrids retaining a small chromosomal fragment in the region of the Huntington disease (HD) gene, we used Southern blot analysis to screen 72 hybrid lines for the presence or absence of seven chromosome 4 single-copy loci. These data, combined with in situ hybridization experiments, identified three hybrids of interest. One of these cell lines, C25, stably retains a 10,000- to 20,000-kb fragment of distal 4p in the vicinity of the HD gene, translocated to a hamster chromosome. Field-inversion gel electrophoresis revealed no evidence of rearrangements in the human DNA present in C25. In combination with similar radiation hybrids, C25 is a valuable tool for isolating DNA probes near the HD gene.  相似文献   

17.
DNA isolation protocol for red seaweed (rhodophyta)   总被引:3,自引:0,他引:3  
We report a DNA isolation protocol for red seaweed. The method is a modification of the Dellaporta et al. (1983) protocol for land plants. Our simplified version can be used to process large sample numbers and to minimise polysaccharide co-isolation. The protocol was applied to 12 red seaweed species as well as one green alga and one land plant. The protocol yields about 5 μg of high molecular weight DNA from 10 mg of dried material, with no RNA. No sign of degradation was observed after agarose gel electrophoresis for both freshly extracted DNA and DNA stored for 18 months at 4°C. DNA isolated by our protocol was suitable for genomic library construction (tested for one species), endonuclease restriction, and PCR amplification for all species.  相似文献   

18.
Summary A method for isolating high quality DNA from wholeEuglena cells is described. The procedure consists in: the weakening of the cell pellicle in glycerol avoiding the mechanical disruption of cells and shearing damage in DNA molecules; the decondensation ofEuglena compact chromatin directly inside the cells; the complete dissociation of cells and nucleoproteins in sarkosyl detergent; the optional digestion of proteins and RNA with DNase-free enzymes and the final purification of DNA by isopycnic banding in CsCl gradients. Degradation of DNA is prevented all along the extraction procedure by glycerol, antioxydants, EDTA and sarkosyl detergent. Using the enzymatic digestion step, DNA containing few single-stranded nicks is obtained with a yield approaching 100%. DNA with no single-stranded nick could be obtained with a 35% yield when the enzymatic digestion step was omitted. In both cases, the double-stranded DNA has an average molecular weight equal or greater than 6×107. It is free of contaminants and could be easily digested with restriction enzymes. After digestion with Eco RI and size-fractionation in agarose gel this DNA has permitted specific hybridization of the rDNA sequences with a radioactive rRNA probe.Abbreviations Kbp kilobasepairs - Kb kilobases  相似文献   

19.
Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel''s molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: 1. Understand the mechanism by which DNA fragments are separated within a gel matrix 2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix 3. Identify an agarose solution of appropriate concentration for their needs 4. Prepare an agarose gel for electrophoresis of DNA samples 5. Set up the gel electrophoresis apparatus and power supply 6. Select an appropriate voltage for the separation of DNA fragments 7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands 8. Determine the sizes of separated DNA fragments    相似文献   

20.
Total single-copy DNA and single-copy DNA contiguous to middle repetitive sequences were isolated from mouse brain by successive hydroxylapatite column chromatographies. These DNAs, termed repeat-contiguous single-copy DNA, were found to constitute 48% of the total single-copy DNA. The saturation hybridization values of these two DNA probes to nuclear RNA and cytoplasmic RNA containing polyA of mouse brain and liver were measured. The saturation hybridization levels of total single-copy DNA to brain and liver nuclear RNA were 13.5% and 8.8%, respectively, and those of repeat-contiguous single-copy DNA to the same RNA samples were 13.3% and 8.5%, respectively. On the contrary, the saturation hybridization levels of single-copy DNA to cytoplasmic RNA containing polyA of brain and liver were 3.8% and 2.0%, respectively, and those of repeat-contiguous single-copy DNA to the same RNA samples were 5.8% and 4.0%, respectively. Similar results were obtained with total cytoplasmic RNA. These results indicate that about half the steady state nuclear RNA is transcribed from repeat-contiguous single-copy DNA, and that cytoplasmic RNA containing polyA is mainly derived from repeat-contiguous single-copy DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号