首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine if alterations in sympathetic nervous system (SNS) activity occur in rats with ventromedial hypothalamic (VMH) lesions, norepinephrine (NE) turnover rates were examined in various tissues of lesioned and control, weanling rats. VMH-lesioned rats fed a high-carbohydrate diet ad libitum for 4 weeks following surgery were not hyperphagic, but they gained 50% more body energy than control rats. VMH lesions extended the half-life of 3H-NE in interscapular brown adipose tissue (BAT) by 42%, in abdominal white adipose tissue (WAT) by 201%, in heart by 61% and in pancreas by 85%, and reduced total NE turnover (ng/organ/hr) in BAT (38%), WAT (57%), heart (30%) and pancreas (53%). Reduced SNS activity in BAT is consistent with the decreased energy expenditure (heat production) and increased energy efficiency observed in VMH-lesioned rats. In WAT, decreased SNS activity coupled with hyperinsulinemia would facilitate energy storage as fat by reducing lipid mobilization. In the pancreas, reduced SNS activity would contribute to hyperinsulinemia. These results support the hypothesis that VMH lesions decrease SNS activity in several organs. This change in autonomic tone is very likely a major factor in the development of obesity in VMH-lesioned animals.  相似文献   

2.
Rats with bilateral lateral hypothalamic lesions were killed on the third day after surgery and their brains were assayed for tel-diencephalic norepinephrine and striatal dopamine. Lesion-induced weight loss was highly correlated with depletion of striatal dopamine but not with tel-diencephalic norepinephrine. In rats with severe dopamine depletions, the degree of weight loss was related more to the striatum with the highest remaining level of dopamine suggesting that a critical level of dopamine in one striatum may be essential for lateral hypothalamic recovery.  相似文献   

3.
We examined the effect of an increase of endogenous prostaglandin production, induced by potassium depletion, on the urinary excretion of the norepinephrine metabolites metanephrine, normetanephrine and MHPG. Potassium deficiency caused a significant increase in all three metabolites. Treatment with indomethacin, 10 mg/day for 5 days, partially reversed the increase in the urinary excretion of norepinephrine metabolites. These findings suggest that in the intact organism prostaglandins stimulate, rather than inhibit norepinephrine release. Stimulation of prostaglandin synthesis may lead to an increase in sympathetic nervous system activity by a direct action or via a baroreceptor feedback mechanism.  相似文献   

4.
The objective of this study was to determine whether myocardial contractility is depressed by intense activation of the sympathetic nervous system. A massive sympathetic discharge was produced by injecting veratrine or sodium citrate into the cisterna magna of anesthetized rabbits (n = 10). Two and one-half hr later, the hearts were isolated and their left ventricular (LV) performance evaluated and compared with the LV performance of hearts isolated from control animals (n = 10). LV performance was evaluated from steady-state peak isovolumic systolic and end-diastolic pressures that were generated at various end-diastolic volumes (LV function curves). The relationship between peak LV systolic pressure (or the average peak developed LV wall stress) and LV end-diastolic volume was rotated downward (P less than 0.01) in the hearts removed from rabbits treated with veratrine or citrate. The LV end-diastolic pressure or LV end-diastolic wall stress of these hearts was not different from control at any end-diastolic volume. The diminished ability of the experimental hearts to develop systolic pressure or wall stress suggests that intense sympathetic activation depressed contractility. Severely damaged myofibers, located largely in the subendocardium, were found in these hearts. Furthermore, the depressed contractility was not related to pulmonary edema since only 2 of 10 rabbits developed edema.  相似文献   

5.
6.
7.
Sildenafil induces vasodilation and is used for treating erectile dysfunction. Although its influence on resting heart function appears to be minimal, recent studies suggest that sildenafil can increase sympathetic activity. We therefore tested whether sildenafil injected into the central nervous system alters the autonomic control of the cardiovascular system in conscious rats. The effect of sildenafil citrate injected into the lateral cerebral ventricle was evaluated in conscious rats by means of the recording of lumbar sympathetic nerve activity (LSNA), spectral analysis of systolic arterial pressure and heart rate variability, spontaneous baroreflex sensitivity, and baroreflex control of LSNA. Intracerebroventricular (ICV, 100 microg /5 microl) administration of sildenafil caused remarkable tachycardia without significant change in basal arterial pressure and was associated with a conspicuous increase (47 +/- 14%) in LSNA. Spectral analysis demonstrated that systolic arterial pressure oscillations in the low frequency (LF) range were increased (from 6.3 +/- 1.5 to 12.8 +/- 3.8 mmHg(2)), whereas the high frequency (HF) range was not affected by ICV administration of sildenafil. Sildenafil increased pulse interval oscillations at LF and decreased them at HF. The LF-HF ratio increased from 0.04 +/- 0.01 to 0.17 +/- 0.06. Spontaneous baroreflex sensitivity measured by the sequence method and the baroreflex relationship between mean arterial pressure and LSNA were not affected by ICV administration of sildenafil. In conclusion, sildenafil elicited an increase in sympathetic nerve activity that is not baroreflex mediated, suggesting that this drug is able to elicit an autonomic imbalance of central origin. This finding may have implications for understanding the cardiovascular outcomes associated with the clinical use of this drug.  相似文献   

8.
Recent studies have implicated reactive oxygen species (ROS) in the pathogenesis of hypertension and activation of the sympathetic nervous system (SNS). Because nitric oxide (NO) exerts a tonic inhibition of central SNS activity, increased production of ROS could enhance inactivation of NO and result in activation of the SNS. To test the hypothesis that ROS may modulate SNS activity, we infused Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl), a superoxide dismutase mimetic, or vehicle either intravenously (250 microg x kg(-1) x min(-1)) or in the lateral ventricle (50 microg x kg body wt(-1) x min(-1)), and we determined the effects on blood pressure (BP), norepinephrine (NE) secretion from the posterior hypothalamus (PH) measured by the microdialysis technique, renal sympathetic nerve activity (RSNA) measured by direct microneurography, the abundance of neuronal NO synthase (nNOS)-mRNA in the PH, paraventricular nuclei (PVN), and locus coeruleus (LC) measured by RT-PCR, and the secretion of nitrate/nitrite (NO(x)) in the dialysate collected from the PH of Sprague-Dawley rats. Tempol reduced BP whether infused intravenously or intracerebroventricularly. Tempol reduced NE secretion from the PH and RSNA when infused intracerebroventricularly but raised NE secretion from the PH and RSNA when infused intravenously. The effects of intravenous Tempol on SNS activity were blunted or abolished by sinoaortic denervation. Tempol increased the abundance of nNOS in the PH, PVN, and LC when infused intracerebroventricularly, but it decreased the abundance of nNOS when infused intravenously. When given intracerebroventricularly, Tempol also reduced the concentration of NO(x) in the dialysate collected from the PH. Pretreatment with N(omega)-nitro-l-arginine methyl ester did not abolish the effects of intracerebral Tempol on BP, heart rate, NE secretion from the PH, and RSNA suggesting that the effects of Tempol on SNS activity may be in part dependent and in part independent of NO. In all, these studies support the notion that ROS may raise BP via activation of the SNS. This activation may be mediated in part by downregulation of nNOS and NO production, in part by mechanisms independent of NO. The discrepancy in results between intracerebroventricular and intravenous infusion of Tempol can be best explained by direct inhibitory actions on SNS activity when given intracerebral. By contrast, Tempol may exert direct vasodilation of the peripheral circulation and reflex activation of the SNS when given intravenously.  相似文献   

9.
J B Young 《Life sciences》1988,43(2):193-200
Since insulin acutely stimulates the sympathetic nervous system, a role for sympathetic overactivity has been hypothesized to underlie the association between chronic hyperinsulinemia and hypertension. To assess the effect of sustained hyperinsulinemia on sympathetic function, [3H]norepinephrine (NE) turnover was measured in rats injected with insulin for 14d. NE turnover in insulin-treated animals given free access to lab chow and a 10% sucrose solution was compared with that obtained in rats fed chow alone or chow plus sucrose. Sucrose ingestion increased NE turnover in heart, brown adipose tissue, and liver, but exogenous insulin did not augment turnover beyond that seen in animals given sucrose alone. This study, therefore, provides no evidence that chronic hyperinsulinemia, sufficient to induce peripheral insulin resistance, stimulates sympathetic activity more than that produced by chronic sucrose ingestion.  相似文献   

10.
Eight patients were studied in whom a lesion within the central nervous system caused constant pain and hyperpathia. Blockade of the sympathetic supply to the periphery was carried out in each patient by stellate ganglion block or intravenous infusion of guanethidine 15 mg in 30 ml saline into a limb on the affected side. On almost every occasion the pain and hypersensitivity were reduced, sometimes completely. Thus chronic pain and hyperpathia arising from a lesion in the central nervous system may be abolished by blocking the sympathetic supply to the periphery; this effect may be achieved when not all the peripheral nerves of the affected region have had their sympathetic nerve supply blocked. Such blockade may be worth repeating in the hope of achieving lasting relief of the intractable pain.  相似文献   

11.
12.
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat‐insulin‐promoter‐Cre (RIP‐Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT. Genetic ablation of APPL2 in RIP‐Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP‐Cre neurons, inactivation of VMH AMPK, or treatment with a β3‐adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP‐Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP‐Cre neurons, in which the APPL2–AMPK signaling axis is crucial for this defending mechanism to cold and obesity.  相似文献   

13.
14.
15.

Background  

Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance.  相似文献   

16.

Objective:

This study was designed to determine how gastric bypass affects the sympathetically‐mediated component of resting energy expenditure (REE) and muscle sympathetic nerve activity (MSNA).

Design and Methods:

We measured REE before and after beta‐blockade in seventeen female subjects approximately three years post‐gastric bypass surgery and in nineteen female obese individuals for comparison. We also measured MSNA in a subset of these subjects.

Results:

The gastric bypass subjects had no change in REE after systemic beta‐blockade, reflecting a lack of sympathetic support of REE, in contrast to obese subjects where REE was reduced by beta‐blockade by approximately 5% (P < 0.05). The gastric bypass subjects, while still overweight (BMI = 29.3 vs 38.0 kg·m?2 for obese subjects, P < 0.05), also had significantly lower MSNA compared to obese subjects (10.9 ± 2.3 vs. 21.9 ± 4.1 bursts·min?1, P < 0.05). The reasons for low MSNA and a lack of sympathetically mediated support of REE after gastric bypass are likely multifactorial and may be related to changes in insulin sensitivity, body composition, and leptin, among other factors.

Conclusions:

These findings may have important consequences for the maintenance of weight loss after gastric bypass. Longitudinal studies are needed to further explore the changes in sympathetic support of REE and if changes in MSNA or tissue responsiveness are related to the sympathetic support of REE.
  相似文献   

17.
Our previous studies have shown that norepinephrine (NE) upregulates proinflammatory cytokines by activating alpha(2)-adrenoceptor. Therefore, modulation of the sympathetic nervous system represents a novel treatment for sepsis. We have also shown that a novel stomach-derived peptide, ghrelin, is downregulated in sepsis and that its intravenous administration decreases proinflammatory cytokines and mitigates organ injury. However, it remains unknown whether ghrelin inhibits sympathetic activity through central ghrelin receptors [i.e., growth hormone secretagogue receptor 1a (GHSR-la)] in sepsis. To study this, sepsis was induced in male rats by cecal ligation and puncture (CLP). Ghrelin was administered through intravenous or intracerebroventricular injection 30 min before CLP. Our results showed that intravenous administration of ghrelin significantly reduced the elevated NE and TNF-alpha levels at 2 h after CLP. NE administration partially blocked the inhibitory effect of ghrelin on TNF-alpha in sepsis. GHSR-la inhibition by the administration of a GHSR-la antagonist, [d-Arg(1),d-Phe(5), d-Trp(7,9),Leu(11)]substance P, significantly increased both NE and TNF-alpha levels even in normal animals. Markedly elevated circulating levels of NE 2 h after CLP were also significantly decreased by intracerebroventricular administration of ghrelin. Ghrelin's inhibitory effect on NE release was completely blocked by intracerebroventricular injection of the GHSR-1a antagonist or a neuropeptide Y (NPY)/Y(1) receptor antagonist. However, ghrelin's downregulatory effect on TNF-alpha release was only partially diminished by these agents. Thus ghrelin has sympathoinhibitory properties that are mediated by central ghrelin receptors involving a NPY/Y1 receptor-dependent pathway. Ghrelin's inhibitory effect on TNF-alpha production in sepsis is partially because of its modulation of the overstimulated sympathetic nerve activation.  相似文献   

18.
Immunoregulation mediated by the sympathetic nervous system.   总被引:9,自引:0,他引:9  
A postulated immunoregulatory role for the autonomous nervous system was explored utilizing several in vivo and in vitro approaches. Local surgical denervation of the spleen in rats and general chemical sympathectomy by 6-hydroxydopamine combined with adrenalectomy yielded a similar removal of restraint expressed as enhancement in the number of PFC in response to immunization. Noradrenaline and the synthetic α-agonist clonidine which are, respectively, natural and artificial effector molecules of the sympathetic nervous system each strongly suppressed the in vitro induced immune response of murine spleen cells to SRBC. Further, radiometric-enzymatic assay of noradrenaline in the splenic pulp revealed a decrease in the content of this neurotransmitter just preceding the exponential phase of the immune response to SRBC (Days 3 and 4) in this site. Taken together, these findings point to a dynamic immunoregulatory relationship between the immune and sympathetic nervous system.  相似文献   

19.
20.
Previously, we demonstrated that epinephrine induced the expression of interleukin (IL)-6 mRNA via beta-adrenoceptors in cultured human osteoblastic cells. IL-6 is well known to modulate bone metabolism by regulating the development and function of osteoclasts and osteoblasts. Recently, restraint stress and intracerebroventricular injection of lipopolysaccharide (LPS) have been reported to induce the expression of IL-6 mRNA in peripheral organs in mice in which expression is mediated by the activation of the sympathetic nervous system. To prove the physiological role of sympathetic nerves in bone metabolism in vivo, we examined by RT-PCR analysis the effects of restraint stress and intracerebroventricular injection of LPS on IL-6 mRNA expression in mouse calvaria. The expression of IL-6 mRNA in mouse calvaria was stimulated by either restraint stress (30 min) or intracerebroventricular injection of LPS (50 ng/mouse, 60 min). The treatment of mice with the neurotoxin 6-hydroxydopamine (6-OHDA, 100 mg x kg-1 x day-1 ip for 3 days) inhibited LPS (icv)-induced expression of IL-6 mRNA in their calvaria. The expression of IL-6 mRNA induced by the restraint stress was not influenced by 6-OHDA, which destroys noradrenergic nerve terminals. Furthermore, pretreatment with a beta-blocker, propranolol (15 or 25 mg/kg ip), inhibited both stress- and LPS-induced increases in the level of IL-6 mRNA, but pretreatment with an alpha-blocker, phentolamine (5 mg/kg sc), did not inhibit them in mouse calvaria. In addition, treatment of calvaria with isoprenaline or norepinephrine increased IL-6 synthesis in the organ culture system. These results indicate that in vivo adrenergic stimulation modulates the osteoblastic activity in mouse calvaria via noradrenergic nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号