首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

2.
The Intergovernmental Panel on Climate Change predicts dramatic changes in precipitation patterns over the next century. One potential method for inferring how these changes in annual precipitation and intensity of storm events will influence aquatic ecosystems is to study and model present-day lakes that share climatic characteristics with future climate scenarios. A small lake in north-central Taiwan provided an excellent opportunity to explore the influence of intense meteorological events on CO2 exchange between surface waters and the atmosphere. Each year Yuan Yang Lake (YYL) is influenced by multiple typhoons that pass near the island of Taiwan. This lake has been instrumented with a sensor network that monitors water column and meteorological parameters at a high temporal resolution (2–10 min intervals). Using this high-resolution data and manually collected CO2 samples, a mass-balance model of CO2 dynamics in YYL was developed. In addition, a generalized simulation model was used to explore how typhoon frequency, intensity, and timing impact CO2 efflux to the atmosphere. Our findings suggest that increased annual precipitation and frequency of storm events results in greater epilimnetic interaction with the watershed and hypolimnion. These interactions resulted in elevated epilimetic CO2 concentrations and therefore greater evasion of CO2 to the atmosphere.  相似文献   

3.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

4.
Abstract: The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 μl I-1 CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter content were increased upon exposure to elevated CO2. Maximal increase in shoot fresh and dry weight was obtained at 560 μl I-1 CU2, which was due to a transient stimulation of the relative growth rate for up to 3 days. The shoot starch content increased with increasing CO2 concentrations up to two-fold at 1680 μl I-1 CO2, whereas the contents of soluble sugars and phenolic compounds were hardly affected by elevated CO2. The chlorophyll and carotenoid contents were not substantially affected at elevated CO2 and the chlorophyll a/b ratio remained unaltered. There was no acclimation of photosynthesis at elevated CO2; the photosynthetic capacity of leaves, which had completely developed at elevated CO2 was similar to that of leaves developed in ambient air. The possible consequences of an elevated atmospheric CO2 concentration to Arabidopsis thaliana in its natural habitat is discussed.  相似文献   

5.
The responses of three species of nitrogen-fixing trees to CO2 enrichment of the atmosphere were investigated under nutrient-poor conditions. Seedlings of the legume, Robinia pseudoacacia L. and the actinorhizal species, Alnus glutinosa (L.) Gaertn. and Elaeagnus angustifolia L. were grown in an infertile forest soil in controlled-environment chambers with atmospheric CO2 concentrations of 350 μl −1 (ambient) or 700 μl −1. In R. pseudoacacia and A. glutinosa , total nitrogenase (N2 reduction) activity per plant, assayed by the acetylene reduction method, was significantly higher in elevated CO2, because the plants were larger and had more nodule mass than did plants in ambient CO2. The specific nitrogenase activity of the nodules, however, was not consistently or significantly affected by CO2 enrichment. Substantial increases in plant growth occurred with CO2 enrichment despite probable nitrogen and phosphorus deficiencies. These results support the premises that nutrient limitations will not preclude growth responses of woody plants to elevated CO2 and that stimulation of symbiotic activity by CO2 enrichment of the atmosphere could increase nutrient availability in infertile habitats.  相似文献   

6.
Dry weight (DW) and nitrogen (N) accumulation and allocation were measured in isolated plants of Danthonia richardsonii (Wallaby Grass) for 37 d following seed imbibition. Plants were grown at ≈ 365 or 735 μ L L–1 CO2 with N supply of 0·05, 0·2 or 0·5 mg N plant–1 d–1. Elevated CO2 increased DW accumulation by 28% (low-N) to 103% (high-N), following an initial stimulation of relative growth rate. Net assimilation rate and leaf nitrogen productivity were increased by elevated CO2, while N concentration was reduced. N uptake per unit root surface area was unaffected by CO2 enrichment. The ratio of leaf area to root surface area was decreased by CO2 enrichment. Allometric analysis revealed a decrease in the shoot-N to root-N ratio at elevated CO2, while the shoot-DW to root-DW ratio was unchanged. Allometric analysis showed leaf area was reduced, while root surface area was unchanged by elevated CO2, indicating a down-regulation of total plant capacity for carbon gain rather than a stimulation of mineral nutrient acquisition capacity. Overall, growth in elevated CO2 resulted in changes in plant morphology and nitrogen use, other than those associated simply with changing plant size and non-structural carbohydrate content.  相似文献   

7.
Carbon and water fluxes in a calcareous grassland under elevated CO2   总被引:3,自引:2,他引:1  
1. As part of a long-term study of the effects of elevated CO2 on biodiversity and ecosystem function in a calcareous grassland, we measured ecosystem carbon dioxide and water-vapour fluxes over 24-h periods during the 1994 and 1995 growing seasons. Data were used to derive CO2 and H2O gas-exchange response functions to quantum flux density (QFD).
2. The relative increase in net ecosystem CO2 flux (NEC) owing to CO2 enrichment increased as QFD rose. Daytime NEC at high QFD under elevated CO2 increased by 25% to 60%, with the greatest increases in the spring and after mowing in June when above-ground biomass was lowest. There was much less stimulation of NEC in early June and again in October when the canopy was fully developed. Night-time NEC was not significantly altered under elevated CO2.
3. Short-term reversal of CO2 concentrations between treatments after two seasons of CO2 exposure provided evidence for a 50% downward adjustment of NEC expressed per unit above-ground plant dry weight. However, when expressed on a land area basis, this difference disappeared because of a c. 20% increase in above-ground biomass under elevated CO2.
4. Ecosystem evapotranspiration (ET) was not significantly altered by elevated CO2 when averaged over all measurement dates and positions. However, ET was reduced 3–18% at high QFD in plots at the top of the slope at our study site. In summary, CO2 enrichment resulted in a large stimulation of ecosystem CO2 capture, especially during periods of a large demand of carbon in relationship to its supply, and resulted in a relatively small and variable effect on ecosystem water consumption.  相似文献   

8.
Respiratory responses of higher plants to atmospheric CO2 enrichment   总被引:5,自引:0,他引:5  
Although the respiratory response of native and agricultural plants to atmospheric CO2 enrichment has been reported over the past 75 years, only recently have these effects emerged as prominent measures of plant and ecosystem response to the earth's changing climate. In this review we discuss this rapidly expanding field of study and propose that both increasing and decreasing rates of leaf and whole-plant respiration are likely to occur in response to rising CO2 concentrations. While the stimulatory effects of CO2 on respiration are consistent with our knowledge of leaf carbohydrate status and plant metabolism, we wish to emphasize the rather surprising short-term inhibition of leaf respiration by elevated CO2 and the reported effects of long-term CO2 exposure on growth and maintenance respiration. As is being found in many studies, it is easier to document the respiratory response of higher plants to elevated CO2 than it is to assign a mechanistic basis for the observed effects. Despite this gap in our understanding of how respiration is affected by CO2 enrichment, data are sufficient to suggest that changes in leaf and whole-plant respiration may be important considerations in the carbon dynamics of terrestrial ecosystems as global CO2 continues to rise. Suggestions for future research that would enable these and other effects of CO2 on respiration to be unravelled are presented.  相似文献   

9.
In future elevated CO2 environments, chewing insects are likely to perform less well than at present because of the effects of increased carbon fixation on their host plants. When the aphid, Aulacorthum solani was reared on bean ( Vicia faba ) and tansy ( Tanacetum vulgare ) plants under ambient and elevated CO2, performance was enhanced on both hosts at elevated CO2. The nature of the response was different on each plant species suggesting that feeding strategy may influence an insect's response to elevated CO2. On bean, the daily rate of production of nymphs was increased by 16% but there was no difference in development time, whereas on tansy, development time was 10% shorter at elevated CO2 but the rate of production of nymphs was not affected. The same aphid clone therefore responded differently to elevated CO2 on different host plants. This increase in aphid performance could lead to larger populations of aphids in a future elevated CO2 environment.  相似文献   

10.
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 μ mol mol–1[CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102·8 ± 4·7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0·05) and root respiration (24%, P < 0·05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.  相似文献   

11.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

12.
Interactive effects of elevated atmospheric CO2 and arbuscular mycorrhizal (AM) fungi on biomass production and N2 fixation were investigated using black locust ( Robinia pseudoacacia ). Seedlings were grown in growth chambers maintained at either 350 μmol mol−1 or 710 μmol mol−1 CO2. Seedlings were inoculated with Rhizobium spp. and were grown with or without AM fungi. The 15N isotope dilution method was used to determine N source partitioning between N2 fixation and inorganic fertilizer uptake. Elevated atmospheric CO2 significantly increased the percentage of fine roots that were colonized by AM fungi. Mycorrhizal seedlings grown under elevated CO2 had the greatest overall plant biomass production, nodulation, N and P content, and root N absorption. Additionally, elevated CO2 levels enhanced nodule and root mass production, as well as N2 fixation rates, of non- mycorrhizal seedlings. However, the relative response of biomass production to CO2 enrichment was greater in non-mycorrhizal seedlings than in mycorrhizal seedlings. This study provides strong evidence that arbuscular mycorrhizal fungi play an important role in the extent to which plant nutrition of symbiotic N2-fixing tree species is affected by enriched atmospheric CO2.  相似文献   

13.
Five species of sap-feeding homoptera were studied on Fagus sylvatica and Acer pseudoplatanus and exposed to elevated concentrations of carbon dioxide (600 μL L–1). The concentration of total soluble amino acids in foliage of F. sylvatica was unaffected by growing saplings in elevated atmospheric CO2 concentrations. Although experiments on individual aphids indicated poorer performance of Phyllaphis fagi (fewer, smaller nymphs produced), resultant populations did not differ from those in ambient (350 μL L–1) conditions. The area of beech foliage stippled by the leafhopper Fagocyba cruenta was similar at ambient and elevated CO2 concentrations. The concentration of total amino acids and that of serine of A. pseudoplatanus foliage were significantly lower at elevated CO2 concentrations. However, the relative growth rates of two aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and one leafhopper Ossiannilssonola callosa were not significantly different in elevated CO2. No evidence was found that, under the conditions of these experiments, populations of aphids and leafhoppers will change as concentrations of CO2 increase.  相似文献   

14.
An open-top chamber experiment was carried out to examine the likely effects of elevated atmospheric [CO2] on architectural as well as on physiological characteristics of two poplar clones ( Populus trichocarpa × P. deltoides clone Beaupré and P. deltoides × P. nigra clone Robusta). Crown architectural parameters required as input parameters for a three-dimensional (3D) model of poplar structure, such as branching frequency and position, branch angle, internode length and its distribution pattern, leaf size and orientation, were measured following growth in ambient and elevated [CO2 ] (ambient + 350 μmol mol–1) treated open-top chambers. Based on this information, the light interception and photosynthesis of poplar canopies in different [CO2] treatments were simulated using the 3D poplar tree model and a 3D radiative transfer model at various stages of the growing season. The first year experiments and modelling results showed that the [CO2] enrichment had effects on light intercepting canopy structure as well as on leaf photosynthesis properties. The elevated [CO2] treatment resulted in an increase of leaf area, canopy photosynthetic rate and above-ground biomass production of the two poplar clones studied. However, the structural components responded less than the process components to the [CO2] enrichment. Among the structural components, the increase of LAI contributed the most to the canopy light interception and canopy photosynthesis; the change of other structural aspects as a whole caused by the [CO2] enrichment had little effect on daily canopy light interception and photosynthesis.  相似文献   

15.
Two rice ( Oryza sativa L.) cultivars of contrasting morphologies, IR-36 and Fujiyama-5, were exposed to ambient (360 μl l−1) and ambient plus 300 μl l−1 CO2 from time of emergence until ca 50% grain fill at the Duke University Phytotron, Durham, North Carolina. Exposure to increased CO2 resulted in about a 50% increase in the photosynthetic rate for both cultivars and photosynthetic enhancement was still evident after 3 months of exposure to a high CO2 environment. The photosynthetic response at 5% CO2 and the response of CO2 assimilation (A) to internal CO2 (Ci) suggest a reallocation of biochemical resources from RuBP carboxylation to RuBP regeneration. Increases in total plant biomass at elevated CO2 were approximately the same in both cultivars, although differences in allocation patterns were noted in root/shoot ratio. Differences in reproductive characteristics were also observed between cultivars at an elevated CO2 environment with a significant increase in harvest index for IR-36 but not for Fujiyama-5. Changes in carbon allocation in reproduction between these two cultivars suggest that lines of rice could be identified that would maximize reproductive output in a future high CO2 environment.  相似文献   

16.
To test the prediction that elevated CO2 increases the maximum leaf area index (LAI) through a stimulation of photosynthesis, we exposed model herbaceous communities to two levels of CO2 crossed with two levels of soil fertility. Elevated CO2 stimulated the initial rate of canopy development and increased cumulative LAI integrated over the growth period, but it had no effect on the maximum LAI. In contrast to CO2, increased soil nutrient availability caused a substantial increase in maximum LAI. Elevated CO2 caused a slight increase in leaf area and nitrogen allocated to upper canopy layers and may have stimulated leaf turnover deep in the canopy. Gas exchange measurements of intact communities made near the time of maximum LAI indicated that soil nutrient availability, but not CO2 enrichment, caused a substantial stimulation of net ecosystem carbon exchange. These data do not support our prediction of a higher maximum LAI by elevated CO2 because the initial stimulation of LAI diminished by the end of the growth period. However, early in development, leaf area and carbon assimilation of communities may have been greatly enhanced. These results suggest that the rate of canopy development in annual communities may be accelerated with future increases in atmospheric CO2 but that maximum LAI is set by soil fertility.  相似文献   

17.
1. Evolutionary responses to climate change will depend on the presence of heritable variation within species populations for traits that increase fitness under the changing conditions. Patterns of ecotypic differentiation in relation to latitude in some species suggest that such variation exists in relation to temperature responses. Response to elevated CO2, whether heritable or not, is not expected to be related to latitudinal or climatic differences within temperate regions.
2. To test these ideas, seeds were collected from 10 populations of the outbreeding perennial grass Agrostis curtisii across its range in Europe from south Wales to Portugal. Plants were grown under ambient and elevated temperature and CO2 conditions, in a factorial design, in solardomes; two half sibs from each population were planted in separate pots in each of the two replicate domes with each combination of treatments. One half sib was harvested at the end of the first summer, the second at the end of the second summer.
3. Survival was uniformly high and flowering uniformly low across treatments and populations.
4. Responses to temperature and CO2 treatments varied over time for almost all populations. Treatment effects were not significant on plants harvested in year 1, although there was a trend towards higher shoot biomass under the elevated temperature and CO2 treatment. In year 2 shoot biomass was significantly higher under the elevated temperature treatment across all populations and there was a strong trend towards decreased biomass under elevated CO2.
5. There were no significant correlations of plant response to either CO2 or temperature with climate at origin.
6. These results warn of the dangers of extrapolating evolutionary plant responses to CO2 from short-term experiments.  相似文献   

18.
1. Six- to eight-week greenhouse experiments with independent control of pH and dissolved CO2 evaluated the potential for CO2 enrichment to stimulate the accumulation of Al, Fe, P and N in shoots of Vallisneria americana , particularly at pH 5. These minerals were provided only as they occurred in natural lake sediments.
2. The effect of CO2 enrichment at pH 5 v pH 7.3 on growth and tissue N concentration was also determined.
3. CO2 enrichment at pH 5 effected 5.5- and 7-fold increases in total shoot accumulation of Al and Fe, respectively. In a two-way factorial experiment, CO2 enrichment yielded 6- to 11-fold greater total shoot P accumulation in plants grown on less and more fertile sediments, respectively.
4. In a three-way factorial experiment, CO2 enrichment stimulated Vallisneria growth, especially at pH 5, and resulted in a 31–58% reduction in tissue [N] for different pH × sediment combinations. These are greater reductions than previously reported. It also increased total shoot N accumulation up to 6-fold, and there were significant interactions with pH and sediment source: the CO2 enrichment effect on shoot N accumulation was greater at pH 5 than at pH 7.3, and it was greater with the more fertile sediment at pH 5.
5. Water chemistry (pH and/or [CO2]) and sediment fertility thus both indirectly influenced the accumulation of sediment-derived minerals in macrophyte shoots within the water column.  相似文献   

19.
1. Six- to eight-week greenhouse experiments with independent control of pH and dissolved CO2 evaluated the potential for CO2 enrichment to stimulate the accumulation of Al, Fe, P and N in shoots of Vallisneria americana , particularly at pH 5. These minerals were provided only as they occurred in natural lake sediments.
2. The effect of CO2 enrichment at pH 5 v pH 7.3 on growth and tissue N concentration was also determined.
3. CO2 enrichment at pH 5 effected 5.5- and 7-fold increases in total shoot accumulation of Al and Fe, respectively. In a two-way factorial experiment, CO2 enrichment yielded 6- to 11-fold greater total shoot P accumulation in plants grown on less and more fertile sediments, respectively.
4. In a three-way factorial experiment, CO2 enrichment stimulated Vallisneria growth, especially at pH 5, and resulted in a 31–58% reduction in tissue [N] for different pH × sediment combinations. These are greater reductions than previously reported. It also increased total shoot N accumulation up to 6-fold, and there were significant interactions with pH and sediment source: the CO2 enrichment effect on shoot N accumulation was greater at pH 5 than at pH 7.3, and it was greater with the more fertile sediment at pH 5.
5. Water chemistry (pH and/or [CO2]) and sediment fertility thus both indirectly influenced the accumulation of sediment-derived minerals in macrophyte shoots within the water column.  相似文献   

20.
Ecosystem models predict that short-term responses to elevated atmospheric CO2 may differ substantially from the "real" long-term responses expected at equilibrium. Experimental validation of these model predictions is difficult as the data available are from short-term studies that do not include biogeochemical feedbacks typical of long-term exposure. Using a reciprocal transplant design at a natural CO2 spring, we generated combinations of atmospheric and soil conditions that represented both short- and long-term elevated CO2 conditions. Plant responses were significantly different between these treatments, confirming model predictions that there is not a simple relationship between transient and equilibrium responses to elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号