首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proliferating cell nuclear antigen is best known as a DNA polymerase accessory protein but has more recently also been shown to have different functions in important cellular processes such as DNA replication, DNA repair, and cell cycle control. PCNA has been found in quaternary complexes with the cyclin kinase inhibitor p21 and several pairs of cyclin-dependent protein kinases and their regulatory partner, the cyclins. Here we show a direct interaction between PCNA and Cdk2. This interaction involves the regions of the PCNA trimer close to the C termini. We found that PCNA and Cdk2 form a complex together with cyclin A. This ternary PCNA-Cdk2-cyclin A complex was able to phosphorylate the PCNA binding region of the large subunit of replication factor C as well as DNA ligase I. Furthermore, PCNA appears to be a connector between Cdk2 and DNA ligase I and to stimulate phosphorylation of DNA ligase I. Based on our results, we propose the model that PCNA brings Cdk2 to proteins involved in DNA replication and possibly might act as an "adaptor" for Cdk2-cyclin A to PCNA-binding DNA replication proteins.  相似文献   

2.
The diverse function of proliferating cell nuclear antigen (PCNA) may be regulated by interactions with different protein partners. Interestingly, the binding sites for all known PCNA-associating proteins are on the outer surface or the C termini ("front") sides of the PCNA trimer. Using cell extracts and purified human PCNA protein, we show here that two PCNA homotrimers form a back-to-back doublet. Mutation analysis suggests that the Arg-5 and Lys-110 residues on the PCNA back side are the contact points of the two homotrimers in the doublet. Furthermore, short synthetic peptides encompassing either Arg-5 or Lys-110 inhibit double trimer formation. We also found that a PCNA double trimer, but not a homotrimer alone, can simultaneously accommodate chromatin assembly factor-1 and polymerase delta. Together, our data supports a model that chromatin remodeling by chromatin assembly factor-1 (and, possibly, many other cellular activities) are tightly coupled with DNA replication (and repair) through a PCNA double trimer complex.  相似文献   

3.

Background

PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome.

Scope

This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution.

Conclusions

Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.  相似文献   

4.
We have recently shown that two proteins, proliferating cell nuclear antigen (PCNA) and p21, are associated with cyclin D. Here we show that PCNA and p21 are common components of a wide variety of cyclin/cyclin-dependent kinase complexes in nontransformed cells. These include kinase complexes containing cyclin A, cyclin B, and cyclin D, associated either with CDC2, CDK2, CDK4, or CDK5. We show that PCNA and p21 form separate quaternary complex with each cyclin/CDK and that these quaternary complexes contain a substantial, if not major, fraction of the cell cycle kinases in asynchronously growing cells. These results suggest that PCNA and p21 may perform a common function for all these kinases.  相似文献   

5.
We investigated the expression of proliferative cell nuclear antigen (PCNA) in zebrafish to delineate the proliferative hematopoietic component during adult and embryonic hematopoiesis. Immunostaining for PCNA and enhanced green fluorescence protein (eGFP) was performed in wild-type and fli1-eGFP (endothelial marker) and gata1-eGFP (erythroid cell marker) transgenic fish. Expression of PCNA mRNA was examined in wild-type and chordin morphant embryos. In adult zebrafish kidney, the renal tubules are surrounded by endothelial cells and it is separated into hematopoietic and excretory compartments. PCNA was expressed in hematopoietic progenitor cells but not in mature neutrophils, eosinophils or erythroid cells. Some PCNA+ cells are scattered in the hematopoietic compartment of the kidney while others are closely associated with renal tubular cells. PCNA was also expressed in spermatogonial stem cells and intestine crypts, consistent with its role in cell proliferation and DNA synthesis. In embryos, PCNA is expressed in the brain, spinal cord and intermediate cell mass (ICM) at 24 h-post fertilization. In chordin morphants, PCNA is significantly upregulated in the expanded ICM. Therefore, PCNA can be used to mark cell proliferation in zebrafish hematopoietic tissues and to identify a population of progenitor cells whose significance would have to be further investigated.  相似文献   

6.
We were studied the proliferative activity of the thyroid gland's cells of embryo and adult Wistar rats due to using the antiserum against the cell nuclear antigen (PCNA). The 100% of cells in thyroid's embryo was a positive on the 16th, 17th, 18th stages of the embryonic development (stages by Kornegy). The percent of PCNA-positive cells considerably increased to 67% on the 19th stage. This fact the 20th and 21th stages of prenatal development relatively the previous stage coordinate with starting of the thyroid hormones in fetal thyroid gland and the first follicles formation. The small increasing of number of PCNA-positive cells detected on the 20th and 21th stages of prenatal development relatively the previous stage. Considerable elevation of the proliferating cells to 75% immediately before the birth (22th stage). An infant rats had have the 39% of proliferating cells. The 51% cells divided on the 5th day of postnatal development. Considerable decreased of the cell's division was occurred until the postnatal day 60. Using of the PCNA antiserum allowed to study cell proliferation in thyroid gland during pre- and postnatal rat development.  相似文献   

7.
The expression of proliferating cell nuclear antigen (PCNA) correlates to cell proliferation and for this reason it is commonly considered as one of proliferation markers. Since proliferation rate is an important factor determining the tumor aggressiveness, the evaluation of PCNA index (the percentage of PCNA-immunopositive nuclei in the investigated tumor sample) is suggested as useful in predicting pituitary adenoma outcome. Seventy three unselected, surgically removed pituitary adenomas were immunostained with antibodies against the pituitary hormones or their subunits and against the proliferating cell nuclear antigen (PCNA). The highest PCNA index was found in ACTH-immunopositive tumors without the manifestation of the Cushing's disease ("silent" corticotropinomas). This value was significantly different in comparison to other adenoma subtypes including corticotropinomas manifesting themselves by Cushing's disease. The lowest PCNA index was noticed in monohormonal GH-secreting tumors. The adenomas which express more than one hormone (plurihormonal adenomas) seem to have a higher PCNA indices than monohormonal ones; the difference was significant in the case of mono- and plurihormonal prolactinomas. The recurrent tumors presented a higher mean PCNA index as compared to the primary tumors, although the difference was significant only in the case of prolactinomas. These findings suggest that the proliferative potential of pituitary adenomas is related to the tumor recurrence and hormone expression.  相似文献   

8.
K Smetana  F Gyorkey  P K Chan  E Tan  H Busch 《Blut》1983,46(3):133-141
Lymphoma (Lymphocytic non-Hodgkin's malignant lymphoma) and leukemic (chronic lymphocytic, acute and chronic myeloid, myelomonocytic leukemia) cells were studied by indirect immunofluorescence to evaluate the presence of proliferating cell nuclear antigen (PCNA) and human malignant tumor nuclear antigen (HMTNA) in their nucleoli. Most cells in lymph node smears of lymphocytic non-Hodgkin's malignant lymphoma (NHML) developed a bright nucleolar fluorescence with HMTNA antibodies. PCNA was detected in nucleoli of a limited number of cells which apparently represent the proliferating cell population in these lymphomas. Similarly, in the bone marrow smears of patients with chronic lymphocytic leukemia most cells possessed a nucleolar fluorescence for HMTNA and PCNA was present in nucleoli of a limited number of cells. In the bone marrow smears of patients with myeloid or myelomonocytic leukemias most blastic or monocytoid cells also developed a bright nucleolar fluorescence with HMTNA antibodies and PCNA was present only in a small percentage of these cells. Leukemic cells with PCNA in their nucleoli like thekhuntigen might represent a proliferating cell population in late G1-early S phase.  相似文献   

9.
Proliferating cell nuclear antigen (PCNA) is involved in a wide range of functions in the nucleus. However, a substantial amount of PCNA is also present in the cytoplasm, although their function is unknown. Here we show, through Far-Western blotting and mass spectrometry, that PCNA is associated with several cytoplasmic oncoproteins, including elongation factor, malate dehydrogenase, and peptidyl-prolyl isomerase. Surprisingly, PCNA is also associated with six glycolytic enzymes that are involved in the regulation of steps 4-9 in the glycolysis pathway.

Structured summary

MINT-7995351: G3P (uniprotkb:P04406) and PCNA (uniprotkb:P12004) colocalize (MI:0403) by fluorescencemicroscopy (MI:0416)MINT-7995334: ENOA (uniprotkb:P06733) and PCNA (uniprotkb:P12004) colocalize (MI:0403) by fluorescencemicroscopy (MI:0416)MINT-7995368: ALDOA (uniprotkb:P04075) and PCNA (uniprotkb:P12004) colocalize (MI:0403) by fluorescencemicroscopy (MI:0416)MINT-7995141: G3P (uniprotkb:P04406) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995182: ENOA (uniprotkb:P06733) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995132: G3P (uniprotkb:P04406) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995228: PRDX6 (uniprotkb:P30041) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995220: CAH2 (uniprotkb:P00918) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995114: Triosephosphateisomerase (uniprotkb:P60174) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995244: K2C7 (uniprotkb:P08729) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995252: ANXA2 (uniprotkb:P07355) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995122: Triosephosphateisomerase (uniprotkb:P60174) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995093: ALDOA (uniprotkb:P04075) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995148: PGK1 (uniprotkb:P00558) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995158: PGAM1 (uniprotkb:P18669) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995166: PGAM1 (uniprotkb:P18669) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995105: ALDOA (uniprotkb:P04075) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995260: PPIA (uniprotkb:P62937) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995173: ENOA (uniprotkb:P06733) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995268: EF1A (uniprotkb:P68104) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995236: MDHM (uniprotkb:P40926) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995189: RSSA (uniprotkb:P08865) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995282: PCNA (uniprotkb:P12004) physicallyinteracts (MI:0915) with ALDOA (uniprotkb:P00883) and G3P (uniprotkb:P46406) by antibaitcoimmunoprecipitation (MI:0006).  相似文献   

10.
The DNA polymerase accessory factor proliferating cell nuclear antigen (PCNA) has been caught in interaction with an ever increasing number of proteins. To characterize the sites and functions of some of these interactions, we constructed four mutants of human PCNA and analysed them in a variety of assays. By targeting loops on the surface of the PCNA trimer and changing three or four residues at a time to alanine, we found that a region including part of the domain-connecting loop of PCNA and loops on one face of the trimer, close to the C-termini, is involved in binding to all of the following proteins: DNA polymerase delta, replication factor C, the flap endonuclease Fen1, the cyclin dependent kinase inhibitor p21 and DNA ligase I. An inhibition of DNA ligation caused by the interaction of PCNA with DNA ligase I was found, and we show that DNA ligase I and Fen1 can inhibit DNA synthesis by DNA polymerase delta/PCNA. We demonstrate that PCNA must be located below a 5' flap on a forked template to stimulate Fen1 activity, and considering the interacting region on PCNA for Fen1, this suggests an orientation for PCNA during DNA replication with the C-termini facing forwards, in the direction of DNA synthesis.  相似文献   

11.
Xu B  Hua J  Zhang Y  Jiang X  Zhang H  Ma T  Zheng W  Sun R  Shen W  Sha J  Cooke HJ  Shi Q 《PloS one》2011,6(1):e16046
Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.  相似文献   

12.
DNA sequence studies of cytochrome b(5) (Cyt-b) genes from Drosophila melanogaster and Drosophila virilis predict that the Drosophila Cyt-b proteins are extremely hydrophobic and have at least eight potential transmembrane spanning domains. Primary protein sequence analysis also predicts that the Cyt-b proteins have mitochondrial targeting sequences and they contain sites for potential post-translational modification similar to other cytochrome proteins. We report the characterization of the cytochrome b(5) proteins from Drosophila melanogaster and Drosophila virilis. We have used a Drosophila cytochrome b(5) specific antibody to demonstrate that cytochrome b(5) proteins are expressed in muscle-containing tissues in the fly. We also provide evidence that the nuclear encoded cytochrome b(5) protein that contains a mitochondrial targeting sequence is translocated to mitochondria.  相似文献   

13.
Proliferating cell nuclear antigen (PCNA) acts as a sliding clamp on duplex DNA. Its homologs, present in Eukarya and Archaea, are part of protein complexes that are indispensable for DNA replication and DNA repair. In Eukarya, PCNA is known to interact with more than a dozen different proteins, including a human major nuclear uracil-DNA glycosylase (hUNG2) involved in immediate postreplicative repair. In Archaea, only three classes of PCNA-binding proteins have been reported previously: replication factor C (the PCNA clamp loader), family B DNA polymerase, and flap endonuclease. In this study, we report a direct interaction between a uracil-DNA glycosylase (Pa-UDGa) and a PCNA homolog (Pa-PCNA1), both from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (T(opt) = 100 degrees C). We demonstrate that the Pa-UDGa-Pa-PCNA1 complex is thermostable, and two hydrophobic amino acid residues on Pa-UDGa (Phe(191) and Leu(192)) are shown to be crucial for this interaction. It is interesting to note that although Pa-UDGa has homologs throughout the Archaea and bacteria, it does not share significant sequence similarity with hUNG2. Nevertheless, our results raise the possibility that Pa-UDGa may be a functional analog of hUNG2 for PCNA-dependent postreplicative removal of misincorporated uracil.  相似文献   

14.
Proliferating-cell nuclear antigen (PCNA), also known as cyclin, is synthesized in proliferative cells and recently was identified as DNA polymerase-delta auxiliary protein. In this paper, the association of PCNA to the proliferative cells of plants was analysed using both autoantibodies to PCNA obtained from a patient with systemic lupus erythematosus (SLE) and murine monoclonal antibodies. By immunohistochemical analysis, nuclei of cells around the growing point in soybean root tips reacted strongly with autoantibodies to PCNA in the serum from a patient with SLE. The plant PCNA in root tip cells was purified by ammonium sulfate fractionation, DEAE chromatography, and affinity chromatography. The partially purified plant PCNA was tested by immunoblotting and a 34 kD polypeptide reacted with both the human anti-PCNA autoantibody and a mouse monoclonal antibody against human PCNA (TOB 7). In addition, the purified plant PCNA reacted with both antibodies in enzyme-linked immunosorbent assay (ELISA). The binding of anti-PCNA serum to the animal PCNA was blocked by the plant PCNA in this ELISA. The association of PCNA with growing cells in plants was further confirmed by quantitative sandwich type ELISA using two murine monoclonal antibodies to PCNA, TOB7 and TO17. Those results suggested that PCNA in both plant and animal cells had the same immunological and biochemical characteristics and the plant PCNA might play an important role in cell growth, existing as it does in proliferating plant cells. The concentration of PCNA in soybean germ extract before germination was less than 5 ng ml-1 (protein concentration, 6.8 mg ml-1), but that of the root tip stem including the growing point increased to 887 ng ml-1 (protein concentration 3.8 mg ml-1) in the second day after germination.  相似文献   

15.
16.
17.
Proliferating cell nuclear antigen (PCNA), a eukaryotic DNA replication factor, functions not only as a processivity factor for DNA polymerase delta but also as a binding partner for multiple other factors. To understand its broad significance, we have carried out systematic studies of PCNA-binding proteins by a combination of affinity chromatography and mass spectrometric analyses. We detected more than 20 specific protein bands of various intensities in fractions bound to PCNA-fixed resin from human cell lysates and determined their peptide sequences by liquid chromatography and tandem mass spectrometry. A search with human protein data bases identified 12 reported PCNA-binding proteins from both cytoplasmic (S100 lysate) and nuclear extracts with substantial significance and four more solely from the nuclear preparation. CHL12, a factor involved in checkpoint response and chromosome cohesion, was a novel example found in both lysates. Further studies with recombinant proteins demonstrated that CHL12 and small subunits of replication factor C form a complex that interacts with PCNA.  相似文献   

18.
P Laquel  S Litvak    M Castroviejo 《Plant physiology》1993,102(1):107-114
Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta.  相似文献   

19.
In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.  相似文献   

20.
E Pratje  B Guiard 《The EMBO journal》1986,5(6):1313-1317
The proteolytic processing of the mitochondrially encoded subunit II of cytochrome oxidase is prevented by the yeast mutation ts2858. We report that the mutant is, in addition, temperature sensitive for the processing of cytochrome b2, a protein encoded by nuclear DNA. Thus the same mutation affects the removal of pre-sequences from a mitochondrially encoded inner membrane protein and from an imported soluble protein located in the intermembrane space. The mutation blocks the second processing step of cytochrome b2. The cytochrome b2 intermediate accumulates in the mutant at 36 degrees C and assumes its enzyme activity. At 23 degrees C the conversion to the mature protein is considerably slower than in wild-type cells. The similarity of the cleavage sites Asn-Asp and Asn-Glu of the precursors for cytochrome oxidase subunit II and cytochrome b2, respectively, suggests a sequence-specific recognition by one protease or a factor activating a protease. On the other hand maturation of cytochrome c peroxidase, another enzyme of the intermembrane space, is not affected by the pet ts2858 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号