首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A remarkable difference was found in the survival of leavesof Mesembryanthemum crystallinum with plants grown in the C3versus the CAM mode. With excised leaves (petiole in solution)of C3-mode plants subjected to 6 days of darkness, there wasa large reduction in the chlorophyll content of the leaf andleaf turgor had decreased. By day 9, the chlorophyll had disappeared,except at the major veins, and the leaf tip had dried and turnedbrown. In contrast, the leaf tissue in the CAM mode showed onlya partial loss of chlorophyll during the same period, and evenafter 17 days of darkness, the tissue at the base was stillalive. Similarly, intact plants grown in the C3 mode deterioratedmuch faster during 20 days of darkness than did plants grownin the CAM mode. Chlorophyll content, chlorophyll a/b ratio,phosphoenolpyruvate carboxylase, NADP-malic enzyme, malate andstarch content were measured. In both C3- and CAM-mode plants,the starch content decreased rapidly during the dark periodand was nearly depleted after two days. In the CAM-mode tissue,there was a relatively high level of malate during prolongeddarkness (up to 17 days), with a transitory rise early in thedark period. In contrast, the malate content was low and rapidlydepleted in the C3-mode leaves kept in darkness. These findingssuggest that malate may be an important source of carbon forsustaining leaves of CAM-mode M. crystallinum during prolongeddarkness. (Received May 20, 1987; Accepted October 23, 1987)  相似文献   

2.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

3.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

4.
In species of Clusia, switching from C3-photosynthesis (C3-PS)to crassulacean acid metabolism (CAM) may be a means of optimizingwater use, plant carbon balance and photon utilization duringperiods of stress. We ask whether, in perennial species of Clusia,the switch from CAM back to C3-PS is also of ecophysiologicalsignificance. Our objective was to investigate the performanceof C. minor L. during a short-term shift from CAM to C3-PS.During the transition from CAM to C3-PS, nocturnal malate andcitrate accumulation decreased whereas CO2uptake increased duringthe daytime. However, after 7 d, marked nocturnal accumulationof citrate and 24 h CO2uptake occurred. In contrast to C3-likephotosynthesis, a pronounced reduction in the effective quantumyield of photosystem II,  相似文献   

5.
The capacity for C4 photosynthesis in Panicum milioides, a specieshaving reduced levels of photorespiration, was investigatedby examining the activity of certain key enzymes of the C4 pathwayand by pulse-chase experiments with 14CO2. The ATP$P1 dependentactivity of pyruvate,P1 dikinase in the species was extremelylow (0.14–0.18 µmol mg chlorophyll–1 min–1).Low activity of the enzyme was also found in Panicum decipiensand Panicum hians (related species with reduced photorespiration)and in Panicum laxum (a C3 species). The antibody to pyruvate,P1dikinase caused about 70% inhibition of the ATP$P1 dependentactivity of the enzyme in P. milioides. The activity of NAD-malicenzyme and NADP-malic enzyme in P. milioides was equally low(approximately 0.1–0.2 µmol mg chlorophyll–1min–1) and similar to the activity in P. decipiens, P.hians and P. laxum. Photosynthetic pulse-chase experiments underatmospheric conditions showed a typical C3-like pattern of carbonassimilation including the labelling of glycine and serine asexpected during photorespiration. During the pulse with 14CO2only about 1% of the labelled products appeared in malate and2–3% in aspartate. During a chase in atmospheric levelsof CO2 for up to 6 min there was a slight increase in labellingin the C4 acids. The amount of label in carbon 4 of aspartatedid not change during the chase, indicating little or no turnoverof the C4 acid via decarboxylation. The results indicate thatunder atmospheric conditions P. milioides assimilates carbondirectly through the C3 pathway. Photorespiration as indicatedby the CO2 compensation point may be repressed in the speciesby a more efficient recycling of photorespired CO2. (Received June 8, 1982; Accepted July 22, 1982)  相似文献   

6.
The carbon balance and changes in leaf structure in Clusia minorL., were investigated in controlled conditions with regardto nitrogen supply and responses to low and high photosyntheticallyactive radiation (PAR). Nitrogen deficiency and high PAR ledto the production of smaller leaves with higher specific leafdry weight (SLDW) and higher leaf water content, but with lowerchlorophyll content. Nitrogen and PAR levels at growth alsoaffected CO2 exchange and leaf area. In – N conditions,total daily net CO2 uptake and leaf area accumulation were slightlyless for high-PAR-grown plants. In contrast, high-PAR-grownplants supplied with nitrogen showed about a 4-fold higher totaldaily CO2 uptake and about twice the total leaf area of low-PAR-grownplants. Although total daily net CO2 uptake of +N plants wasonly slightly higher than –N plants under the low PARlevel, –N plants produced almost three times more leafarea but with lower SLDW. Under well-watered conditions, low-PAR-grownplants showed only CO2 evolution during the night and malicacid levels decreased. However, there was considerable night-timeaccumulation of titratable protons due to day/night changesin citric acid levels. High-PAR-grown plants showed net CO2uptake, malate and citrate accumulation during the dark period.However, most of the CO2 fixed at night probably came from respiratoryCO2. Positive night-time CO2 exchange was readily observed forlow-PAR-grown plants when they were transferred to high PARconditions or when they were submitted to water stress. In plantsgrown in high and low PAR, CAM leads to a substantial increasein daily water use efficiency for water-stressed plants, althoughtotal net CO2 uptake decreased.  相似文献   

7.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

8.
Mitochondria isolated from leaves of Mesembryanthemum crystallinumoxidized malate by both NAD malic enzyme and NAD malate dehydrogenase.Rates of malate oxidation were higher in mitochondria from plantsgrown at 400 mil NaCl in the rooting medium and performing Crassulaceanacid metabolism (CAM) than in mitochondria from plants grownat 20 mM NaCl and exhibiting C3-photosynthetic CO2 fixation.The mitochondria isolated from plants both in the CAM and C3modes were tightly coupled and gave high respiratory control.At optimum pH for malate oxidation (pH 7.0), pyruvate was themajor product in mitochondria from CAM-M. crystallinum, whereasmitochondria from C3-M. crystallinum produced predominantlyoxaloacetate. Both the extracted NAD malic enzyme in the presenceof CoA and the oxidation of malate to pyruvate by the mitochondriafrom plants in the CAM mode had a pH optimum around 7.0 withactivity declining markedly above this pH. The activity of NAD-malicenzyme, expressed on a cytochrome c oxidase activity basis,was much higher in mitochondria from the CAM mode than the C3mode. The results indicate that mitochondria of this speciesare adapted to decarboxylate malate at high rates during CAM. 1Current address: Lehrstuhl für Botanik II, UniversitätWurzburg, Mittlerer Dallenbergweg 64, 8700 Würzburg, WestGermany. 2Current address: KD 120, Chemical Research Division, OntarioHydro, 800 Kipling Avenue, Toronto, Ontario M8Z5S4, Canada. 3Current address: Department of Botany, Washington State University,Pullman, Washington 99164-4230, U.S.A. (Received March 13, 1986; Accepted September 18, 1986)  相似文献   

9.
The cell-free extract from leaves of Sedum mexicanum, a typicalCAM plant, formed 14C-malate from 14C-aspartate in the presenceof NAD. No reduction of NAD was observed during the reaction.Analysis of this reaction revealed that the transfer of labelfrom l4C-aspartate to malate takes place by the action of malatedehydrogenase and aspartate aminotransferase, and the reactionwas reversible in model experiments with commercial enzymes.Pitfalls in assessing data on dark 14CO2 fixation in CAM arediscussed with reference to the transfer of label between malateand aspartate without actual synthesis. (Received June 2, 1979; )  相似文献   

10.
To study possible changes in the transport metabolites betweenchloroplasts and cytoplasm during CAM induction of Mesembryanthemumcrystallinum, we compared substrate specificity of P11 translocator(s)in isolated chloroplasts from the C3 and CAM-induced plants.The [14C]glu-cose 6-phosphate (G6P) transport activity was significantonly in the chloroplasts of CAM-mode plants and not detectablein those of C3-mode, while a similar high rate of [32P]Pi uptakewas observed with both types of chloroplasts. Kinetic analysisof G6P uptake in the CAM chloroplasts showed a high Vmax [10.6µmol (mg Chl)–1 h–1] and a comparatively lowKm value (0.41 mM); the latter was similar to Ki values of Pi,3-phosphoglycerate and phospho-enolpyruvate, 0.30, 0.34 and0.47 mM, respectively. On the other hand, [32P]Pi uptake inthe CAM chloroplasts was inhibited competitively by G6P witha Ki value (8.4 mM) 20-fold higher than the Km value for G6Puptake, while that in C3 chloroplasts was not inhibited at all.These results suggest that a new G6P/Pi, counterexchange mechanismis induced in the chloroplast envelope of CAM-induced M. crystallinumin addition to the ordinary type of P, translocator, that cannottransport G6P, already present in the C3-type chloroplasts. (Received March 17, 1997; Accepted May 10, 1997)  相似文献   

11.
Etiolated Avena sativa L. coleoptile sections were used to determinethe influence of C2H4 on in vivo and in vitro rates of CO2 fixation,and to measure the influence of various permutations of C2H4,CO2, and malate on growth. Whereas 1 mM malate or 320 µI-1 CO2 stimulated growth by approximately 100 per cent, inhibitionof growth by 10-8 µ I-1 C2H4 was substantial only in thepresence of malate or CO2 The increase in growth rate in responseto these two agents was eliminated by the simultaneous applicationof C2H4. The in vivo rate of dark [14C]bicarbonate fixationand in vitro enzymic assays of fixation were not measurablyinhibited by C2H4. These results are discussed in the lightof evidence which indicates that CO2-stimulated growth is mediatedby dark fixation. The data do not support the view that C2H4inhibition of growth results from an inhibition of fixation,but suggests that C2H4 may inhibit some step in the processby which malate stimulates growth.  相似文献   

12.
Exposure of the facultative halophyte Mesembryanthemum crystallinumL. to salt stress induces a shift from C3 photosynthesis toCrassulacean acid metabolism (CAM). During induction of CAM,the activity of NADP-malic enzyme (EC 1.1.1.40 [EC] ) increased asmuch as 12-fold in leaves, while the enzymatic activity in rootsfell to half of the original level. These changes in the activityof the enzyme corresponded to changes in levels of the enzymeprotein. NADP-malic enzymes extracted from leaves in the C3and CAM modes could be distinguished by differences in electrophoreticmobility during electrophoresis on a non-denaturing polyacrylamidegel. NADP-malic enzyme extracted from roots in the C3-mode andin the CAM mode migrated as fast as the enzyme extracted fromleaves in the CAM mode on the same gel. Although the patternof peptide fragments from NADP-malic enzyme from CAM-mode leaveswas similar to that from C3-mode leaves, as indicated by peptidemapping, both immunoprecipitation and an enzyme-linked immunosorbentassay revealed some antigenic differences between the enzymesextracted from leaves in the C3 and the CAM modes. These resultssuggest the existence of at least two isoforms of NADPmalicenzyme that differ in their levels of expression during inductionof CAM. (Received April 21, 1994; Accepted September 5, 1994)  相似文献   

13.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

14.
The rate of excretion of glycolate by the unicellular greenalga Ankistrodesmus braunii changes during its life cycle. Itis high in the main growth phase during the light period witha maximum 6 hr after the start of illumination, and low duringthe period of cell division in the dark. The glycolate excretion is stimulated by DSPD and HPMS, whilethe total 14CO2-fixation is inhibited by DSPD and enhanced byHPMS. Changes in the effects of DSPD and HPMS on glycolate excretionas well as on photosynthetic 14CO2-fixation during the courseof the algal life cycle were followed using the technique ofsynchronous culture. How far the change of glycolate excretion is due to a changeof glycolate oxidase activity during the life cycle and to achange of C2-supply from the carbon reduction cycle is discussed.The effect of DSPD on glycolate excretion suggests a participationof ferredoxin in the glycolate pathway. (Received August 10, 1968; )  相似文献   

15.
A study has been made of the dark metabolism of CO2 by elongatingfibres of Gossypium arboreum L. cv. LD 133 (a short staple type)and Gossypium hirsutum L. cv. LH 372 (a long staple type) atdifferent fibre ages. In both cultivars, phosphoenolpyruvatecarboxylasc, glutamate-oxalacetate transaminase and malate dehydrogenaseshow elevated activities during the period of rapid fibre growthand lowered activity with ageing. Malic enzyme activity increasesas extension growth levels off. Levels of K+ and malate riseduring rapid extension growth and fall as the rate of elongationdecreases. The results indicate that malate may act as an osmoticumand a counterion for K+ accumulation during rapid expansionof the fibres. Amounts of enzymes, K+ and malate are higherin the fibres of the long staple cultivar than the short staple.During the period of active elongation, K+/malate ratio is higherin the short staple cultivar. Key words: Gossypium hirsutum, CO2 metabolism, Fibre extension  相似文献   

16.
The photosynthetic characteristics of Eleocharis baldwinii (Torr.)Chapman, an amphibious leafless plant in the Cyperaceae, wereinvestigated in both the terrestrial form and the submergedform of the plant. Anatomical observation of the culm, whichis the photosynthetic organ in this plant, revealed that theterrestrial form has the Kranz type of anatomy, whereas thesubmerged form has an inner structure that is similar to thatof submerged aquatic plants, with a reduction in both the numberand the size of bundle sheath cells and vascular bundles andrelatively well developed mesophyll cells. In 14C-pulse 12C-chaseexperiments with the terrestrial form, 80% of the total fixed14C was incorporated into C4 dicarboxylic acids after a 10-spulse. The radioactivity in the C4 acids decreased rapidly,while that in sucrose increased to 36% during a 120-s chase.In the submerged form, 64% and 30% of the total fixed 14C wasincorporated into C4 acids and phosphate esters, respectively,after a 10-s pulse. The radioactivity of these compounds decreasedrelatively slowly during a 120-s chase. The specific activitieson a chlorophyll basis of C4 photosynthetic enzymes that areinvolved in the NAD-ME subtype were high in the terrestrialform, while they were intermediate between those of C3 and C4plants in the submerged form. The activity of ribulose 1,5-bisphosphatecarboxylase was 1.5 times higher in the submerged form thanin the terrestrial form. By contrast, the activity of carbonicanhydrase exhibited the reverse tendency. Western blot analysisof soluble proteins extracted from the mesophyll cells and thebundle sheath strands of the terrestrial form demonstrated thatribulose 1,5-bisphosphate carboxylase/oxygenase protein waspresent in the mesophyll cells as well as in the bundle sheathcells, with a higher level in the latter, although phosphoenolpyruvatecarboxylase and pyruvate, Pi dikinase proteins were restrictedto the mesophyll cells. In the submerged form, diurnal fluctuationsin levels of malate were observed with significant fixationof CO2 at night. However, the diurnal changes of malate weresmaller than those reported for CAM plants. These data indicatethat the terrestrial form of Eleocharis baldwinii fixes atmosphericCO2 essentially via the C4 pathway, while the submerged formfixes inorganic carbon via a complex metabolic system that resemblesan intermediate between C3 and C4 metabolism in associationwith a CAM-like profile. (Received September 12, 1994; Accepted November 21, 1994)  相似文献   

17.
Dark CO2-fixation in guard cells of Vicia faba was much moresensitive to ammonium than in mesophyll cells. Addition of ammonium(5.0 mol m–3; pH0 7.6) caused up to a 7-fold increasein dark CO2-fixation rates in guard cell protoplasts (GCP),whereas in leaf slices, mesophyll cells, and mesophyll protoplaststhe increase was only about 1.4-fold. In both cell or tissuetypes, total CO2-fixation rates were higher in the light (2–12-foldhigher in GCP and 28-fold in mesophyll); these rates were onlyslightly changed by ammonium treatment. However, separationof 14C-labelled products after fixation of CO2 in the lightby GCP revealed a large ammonium-induced shift in carbon flowfrom starch and sugars to typical products of C4-metabolism(mainly malate and aspartate). In contrast, in mesophyll cellsamino acid and malate labelling was only moderately increasedby ammonium at the expense of sucrose. The data suggest thatin vivo ammonium might facilitate stomatal opening and/or delaystomatal closing through an increased production of organicacids. Key words: PEP-carboxylation, guard cell protoplasts, ammonium, fusicoccin  相似文献   

18.
Marques, I. A., Oberholzer, M. J. and Erismann, K. H. 1985.Metabolism of glycollate by Lemna minor L. grown on nitrateor ammonium as nitrogen source.—J. exp. Bot. 36: 1685–1697. Duckweed, Lemna minor L., grown on inorganic nutrient solutionscontaining either NH4+ or NO3 as nitrogen source wasallowed to assimilate [1-14C]- or [2-14C]glycollate during a20 min period in darkness or in light. The incorporation ofradioactivity into water-soluble metabolites, the insolublefraction, and into the CO2 released was measured. In additionthe extractable activity of phosphoenolpyruvate carboxylasewas determined. During the metabolism of [2-14C]glycollate in darkness, as wellas in the light, NH4+ grown plants evolved more 14CO2 than NO3grown plants. Formate was labelled only from [2-14C]glycollateand in NH4+ grown plants it was significantly less labelledin light than in darkness. In NO3 grown plants formateshowed similar radioactivity after dark and light labelling.The radioactivity in glycine was little influenced by the nitrogensource. Amounts of radioactivity in serine implied that thefurther metabolism of serine was reduced in darkness comparedwith its metabolism in the light under both nitrogen regimes.In illuminated NH4+ plants, serine was labelled through a pathwaystarting from phosphoglycerate. After [1-14C]glycollate feedingNH4+ grown plants contained markedly more radioactive aspartateand malate than NO3 plants indicating a stimulated phosphoenolpyruvatecarboxylation in plants grown on NH4+. Key words: Photorespiration, glycollate, nitrogen, Lemna  相似文献   

19.
Gas exchange in Clusia rosea has been measured under variousconditions of water status, light and leaf-air vapour pressuredeficit (w, mbar bar–1) which produce daytime (C3), night-time(CAM) or 24 h uptake of CO2. At high light levels, at a w of6.6, well-watered plants utilized C3 photosynthesis while CAMand 24 h uptake occurred under lower light levels and with lowto normal water availability and differing w (13.5 and 3.4,respectively). CO2 uptake was highest, stomatal conductanceto water vapour (gH2o) lowest, and water use efficiency (WUE)highest in plants using C3 photosynthesis. This latter factis contrary to the accepted view that CAM is most water useefficient, i.e. it optimizes CO2 uptake with minimal water loss.It is suggested that the low CO2 uptake in CAM photosynthesismay be related not only to the higher w but also to the factthat Clusia species accumulate citrate which may originate fromß-carboxylation of fatty acids (i.e. an internal sourceof CO2) and does not contribute to night-time external CO2 assimilation.Curves of assimilation (A) versus internal partial pressureof CO2 (A/c1) for the three photosynthetic types, under atmosphericconditions, did not produce a single trend. The trends whichwere produced represent the supply function for the interaction,under differing modes of photosynthesis, of the two major enzymesystems involved in CAM. Key words: Clusia rosea, Crassulacean acid metabolism, C3 photosynthesis, internal CO2 concentration, 24 h carbon dioxide uptake, water use efficiency.  相似文献   

20.
Lee, H. S. J. and Griffiths, H. 1987. Induction and repressionof CAM in Sedurn relephluni L. in response to photopcnod andwater stress.—J. exp. Bot. 38: 834–841. The introduction and repression of CAM in Sedurn telephiunmL, a temperate succulent, was investigated in watered, progressivelydrouglited and rewatered plants in growth chambers. Measurementswere made of water vapour and CO2 exchange, titratable acidity(TA) and xylem sap tension. Effects of photoperiod were alsostudied. CAM was induced by drought under long or short days,although when watered no CAM activity was expressed. C3-CAM intermediate plants were used for the investigation ofwater supply. Those which had received water and those drought-stressedboth displayed a similar nocturnal increase in TA, with a day-nightmaximum (H+) of 69 µmol g–1 fr. wt. The wateredplants took up CO2 at a maximum rate of 2?2 µmol m–2s–1 only in the light period, while the droughted plantsshowed a maximum nocturnal CO2 uptake rate of 0?69 µmolm–2 s–1. Subsequently, as CAM was repressed, thewatered S. telephiwn displayed little variation in TA, withconstant levels at 42 µmol g–1 fr. wt. (day 10).After 10 d of drought stress, the CAM characteristics of S.telephiurn were aLso affected, with reduced net CO2 uptake andH+. The transition between C3 and CAM in S. telephium can be describedas a progression in terms of the proportion of respiratory CO2which is recycled and refixed at night as malic acid, in comparisonwith net CO2 uptake. Recycling increased from 20% (day 1) to44% (day 10) as a result of the drought stress and was highin both the CAM-C3 stage (no net CO2 uptake at night) and alsoin the drought-stressed CAM stage (reduced net CO2 uptake atnight). The complete C3-CAM transition occurred in less than8 d, and the stages could be characterized by xylem sap tensionmeasurements: CAM = 0?50 MPa C3-CAM = 0?36 MPa C3 = 0?29 MPa. Key words: CAM, Sedum telephium L., recycling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号