首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background

Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor β1 (TGFβ1), a key fibrogenic cytokine, in HSCs.

Methods

Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFβ1-activated LX-2 cells and primary mouse HSCs.

Results

In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFβ1 was abolished by ASTX. ASTX significantly decreased TGFβ1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFβ1, in LX-2 cells. ASTX attenuated TGFβ1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFβ receptor I (TβRI), and TβRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation.

Conclusion

Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFβ1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs.

General significance

This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.  相似文献   

2.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

3.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor beta (TGF-beta), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-beta, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-beta1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-beta1. Furthermore, the protein expression of smooth muscle-alpha-actin (alpha-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-beta1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

4.
5.
Qin Y  Zhong Y  Dang L  Zhu M  Yu H  Chen W  Cui J  Bian H  Li Z 《Journal of Proteomics》2012,75(13):4114-4123
Although aberrant glycosylation of human glycoproteins is related to liver fibrosis that results from chronic damage to the liver in conjunction with the activation of hepatic stellate cells (HSCs), little is known about the precision alteration of protein glycosylation referred to the activation of HSCs by transforming growth factor-β1 (TGF-β1). The human HSCs, LX-2 were activated by TGF-β1. The lectin microarrays were used to probe the alteration of protein glycosylation in the activated HSCs compared with the quiescent HSCs. Lectin histochemistry was used to further validate the lectin binding profiles and assess the distribution of glycosidic residues in cells. As a result, 14 lectins (e. g. AAL, PHA-E, ECA and ConA) showed increased signal while 7 lectins (e. g. UEA-I and GNA) showed decreased signal in the activated LX-2 compared with the quiescent LX-2. Meanwhile, AAL, PHA-E and ECA staining showed moderate binding to the cytoplasma membrane in the quiescent LX-2, and the binding intensified in the same regions of the activated LX-2. In conclusion, the precision alteration of protein glycosylation related to the activation of the HSCs may provide useful information to find new molecular mechanism of HSC activation and antifibrotic therapeutic strategies.  相似文献   

6.
7.
Connective tissue growth factor (CTGF) is induced by transforming growth factor-beta (TGF-beta) via Smad activation in mesangial cells. We recently reported that sphingosine 1-phosphate (S1P) induces CTGF expression in rat cultured mesangial cells. However, the mechanism by which S1P induces CTGF expression is unknown. The present study revealed that S1P-induced CTGF expression is mediated via pertussis toxin-insensitive pathways, which are involved in the activation of small GTPases of the Rho family and protein kinase C. We also showed by luciferase reporter assays and chromatin immunoprecipitation that S1P induces CTGF expression via Smad activation as TGF-beta does.  相似文献   

8.
Although hypoxia and transforming growth factor-beta (TGF-beta) inhibit differentiation of adipocytes from preadipocytes and bone marrow-derived cells in several species, the relationship between hypoxia and TGF-beta signaling in adipocytogenesis is unknown. In this study, we evaluated the mechanisms of inhibition of adipocyte differentiation by hypoxia and TGF-beta in human and murine marrow stromal cells (MSCs) and the role of TGF-beta/Smad signaling in the inhibition of adipocytogenesis by hypoxia. Both hypoxia-mimetic deferoxamine mesylate (DFO) and TGF-beta1 inhibited adipocyte differentiation (1.0% versus the control at 15 microm DFO and 1.4% versus the control at 1 ng/ml TGF-beta1) and adipocyte gene expression (peroxisome proliferator-activated receptor-gamma2 and lipoprotein lipase) in human MSCs after 21 days of treatment. Hypoxia (2% O(2)) and DFO (but not TGF-beta1) increased hypoxia-inducible factor-1alpha as shown by Western blotting. Macroarrays and Western and Northern blot analyses showed that hypoxia activated the TGF-beta/Smad signaling pathway and that both hypoxia and TGF-beta1 modulated adipocyte differentiation pathways such as the insulin-, peroxisome proliferator-activated receptor-gamma-, phosphatidylinositol 3-kinase-, and MAPK-associated signaling pathways. Studies with mouse marrow stromal cell lines derived from Smad3(+/+) or Smad3(-/-) mice revealed that the TGF-beta type I receptor (ALK-5) and its intracellular signaling molecule Smad3 were necessary for the inhibition of adipocyte differentiation by both TGF-beta and hypoxia-mimetic DFO. Thus, the TGF-beta/Smad signaling pathway is required for hypoxia-mediated inhibition of adipocyte differentiation in MSCs.  相似文献   

9.
Smads are intracellular signaling molecules of the transforming growth factor-beta (TGF-beta) superfamily that play an important role in the activation of hepatic stellate cells (HSCs) and hepatic fibrosis. Excepting the regulation of Smad7, receptor-regulated Smad gene expression is still unclear. We employed rat HSCs to investigate the expression and regulation of the Smad1 gene, which is a bone morphogenetic protein (BMP) receptor-regulated Smad. We found that the expression and phosphorylation of Smad1 are increased during the activation of HSCs. Moreover, TGF-beta significantly inhibits Smad1 gene expression in HSCs in a time- and dose-dependent manner. Furthermore, although both TGF-beta1 and BMP2 stimulate the activation of HSCs, they have different effects on HSC proliferation. In conclusion, Smad1 expression and phosphorylation are increased during the activation of HSCs and TGF-beta1 significantly inhibits the expression of the Smad1 gene.  相似文献   

10.
Loss of TGF-beta dependent growth control during HSC transdifferentiation   总被引:2,自引:0,他引:2  
Liver injury induces activation of hepatic stellate cells (HSCs) comprising expression of receptors, proliferation, and extracellular matrix synthesis triggered by a network of cytokines provided by damaged hepatocytes, activated Kupffer cells and HSCs. While 6 days after bile duct ligation in rats TGF-beta inhibited DNA synthesis in HSCs, it was enhanced after 14 days, indicating a switch from suppression to DNA synthesis stimulation during fibrogenesis. To delineate mechanisms modulating TGF-beta function, we analyzed crosstalk with signaling pathways initiated by cytokines in damaged liver. Lipopolysaccharide and tumor necrosis factor-alpha enhanced proliferation inhibition of TGF-beta, whereas interleukin-6, oncostatin M, interleukin-1alpha, and interleukin-1beta did not. Hepatocyte growth factor (HGF) counteracted TGF-beta dependent inhibition of DNA synthesis in quiescent HSCs. Since expression of c-met is induced during activation of HSCs and HGF is overrepresented in damaged liver, crosstalk of HGF and TGF-beta contributes to loss of TGF-beta dependent inhibition of DNA synthesis in HSCs.  相似文献   

11.
P311 is an 8-kDa protein originally found in neurons and muscle. We recently showed that expression of P311 in NIH 3T3 cells induced a myofibroblast phenotype with low TGF-beta1 expression. Here we demonstrate that P311 downregulates not only TGF-beta1, but also TGF-beta2, expression, with no effect on TGF-beta3. In addition, P311 interacts with TGF-beta2 in a yeast two-hybrid system through a sequence encompassing part of the TGF-beta latent associated protein (LAP) and part of mature TGF-beta2. Coimmunoprecipitations demonstrated interaction between P311 and TGF-beta1 and 2, but not TGF-beta3. Additional coimmunoprecipitations after introducing LAP or mature TGF-beta1 into cells demonstrated P311 binding to LAP, but not to mature TGF-beta. P311 has a conserved PEST domain, which generally serves as a rapid degradation signal. Deletion of the PEST domain reversed the effect of P311 on TGF-beta isoforms. Finally, Smad3 activity was decreased in P311-expressing cells, but was corrected by exogenous TGF-beta1 treatment, which also elevated TGF-beta1 mRNA level. This suggested that P311 downregulates TGF-beta1 and 2 in part by blocking TGF-beta autoinduction.  相似文献   

12.
Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy.  相似文献   

13.
TGF-beta1/signaling has been shown to be associated with proapoptotic and antimitotic activities in epithelial tissues. Genistein, a major component of soybean isoflavone, has multiple functions resulting in anticancer proliferation. We herein showed that genistein dose-dependently increased TGF-beta1 mRNA expression in mouse colon cancer MC-26 cells. A mouse monoclonal anti-TGF-beta1 neutralizing antibody partially, but not completely, blocked the growth inhibition by genistein. By using adenoviral vector, we demonstrated that Smad7 overexpression attenuated genistein-induced growth inhibition and apoptosis as determined by MTT and apoptosis ELISA. Smad7 overexpression also inhibited upregulation of p21 and caspase-3 activity by geinistein. To further confirm inhibitory effect of genistein in MC-26 cells require TGF-beta1/Smad signaling, we employed Western blot and electrophoretic mobility shift assay to detect formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, respectively. Data revealed that genistein induced an evident formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, indicating increased TGF-beta1 signaling. Taken together, these findings first provided insights into possible molecular mechanisms of growth inhibition by genistein that required Smad signaling, which could aid in its evaluation for colon tumor prevention.  相似文献   

14.
The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-beta signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of beta-catenin. Genetic interference with TGF-beta signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear beta-catenin accumulation, indicating a crosstalk between TGF-beta and beta-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-beta dependent fashion by inducing autocrine TGF-beta signaling and nuclear beta-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-beta signaling is highly promising in liver cancer therapy.  相似文献   

15.
BACKGROUND/AIMS: Profibrogenic TGF-beta signaling in hepatic stellate cells is modulated during transdifferentiation. Strategies to abrogate TGF-beta effects provide promising antifibrotic results, however, in vivo data regarding Smad activation during fibrogenesis are scarce. METHODS: Here, liver fibrosis was assessed subsequent to bile duct ligation by determining liver enzymes in serum and collagen deposition in liver tissue. Activated hepatic stellate cells were identified by immunohistochemistry and immunoblots for alpha smooth muscle actin. Cellular localization of Smad3 and Smad7 proteins was demonstrated by immunohistochemistry. RTPCR for Smad4 and Smad7 was conducted with total RNA and Northern blot analysis for Smad7 with mRNA. Whole liver lysates were prepared to detect Smad2/3/4 and phospho- Smad2/3 by Western blotting. RESULTS: Cholestasis induces TGF-beta signaling via Smad3 in vivo, whereas Smad2 phosphorylation was only marginally increased. Smad4 expression levels were unchanged. Smad7 expression was continuously increasing with duration of cholestasis. Hepatocytes of fibrotic lesions exhibited nuclear staining Smad3. In contrast to this, Smad7 expression was localized to activated hepatic stellate cells. CONCLUSIONS: Hepatocytes of damaged liver tissue display increased TGF-beta signaling via Smad3. Further, negative feedback regulation of TGF-beta signaling by increased Smad7 expression in activated hepatic stellate cells occurs, however does not interfere with fibrogenesis.  相似文献   

16.
Liver fibrosis is a critical pathological process in the early stage of many liver diseases, including hepatic cirrhosis and liver cancer. However, the molecular mechanism is not fully revealed. In this study, we investigated the role of F-box protein 31 (FBXO31) in liver fibrosis. We found FBXO31 upregulated in carbon tetrachloride (CCl4) induced liver fibrosis and in activated hepatic stellate cells, induced by transforming growth factor-β (TGF-β). The enforced expression of FBXO31 caused enhanced proliferation and increased expression of α-smooth muscle actin (α-SMA) and Col-1 in HSC-T6 cells. Conversely, suppression of FBXO31 resulted in inhibition of proliferation and decreased accumulation of α-SMA and Col-1 in HSC-T6 cells. In addition, upregulation of FBXO31 in HSC-T6 cells decreased accumulation of Smad7, the negative regulator of the TGF-β/smad signaling pathway, and suppression of the FBXO31 increased accumulation of Smad7. Immunofluorescence staining showed FBXO31 colocalized with Smad7 in HSC-T6 cells and in liver tissues of BALB/c mice treated with CCl4. Immunoprecipitation demonstrated FBXO31 interacted with Smad7. Moreover, FBXO31 enhanced ubiquitination of Smad7. In conclusion, FBXO31 modulates activation of HSCs and liver fibrogenesis by promoting ubiquitination of Smad7.  相似文献   

17.
目的:探讨SD大鼠肝纤维化后肝组织及血清中转化生长因子-β1(Transforming Growth Factor-β1,TGF-β1)及Smad3的表达和变化,以及三七皂苷R1对肝纤维化的保护作用。方法:72只健康雄性SD大鼠分为对照组、二甲基亚硝胺(NDMA)组和三七皂苷R1组,再按不同时间点分为1、2、4周,3个亚组,每个亚组8只动物。NDMA组采用NDMA 2 m L/kg腹腔注射,三七皂苷R1组同时静脉注射三七皂苷R1,剂量为100 mg/kg体重,对照组注射等量的生理盐水。在各组的不同时间点采用RT-PCR及ELISA技术检测肝组织及血清中TGF-β1、Smad3的表达及变化。结果:1、TGF-β1、Smad3 m RNA及蛋白在各组中均有表达。2、对照组各时间点比较均无统计学意义(P>0.05)。NDMA组中,随着损伤时间的延长,TGF-β1、Smad3 m RNA及蛋白的表达逐渐上调,且各时间点与对照组比较有统计学意义(P<0.05)。而三七皂苷R1组TGF-β1、Smad3 m RNA及蛋白在各时间点均较NDMA组表达下调,有统计学意义(P<0.05)。结论:1、TGF-β1/Smad3信号参与了肝纤维化的发生和发展过程,且随损伤的逐渐加重,表达越高。2、三七皂苷R1可降低肝组织中TGF-β1/Smad3信号的表达,减轻肝细胞的纤维化,发挥保护肝组织损伤的作用。  相似文献   

18.
The heparan sulfate proteoglycan glypican-1 is essential as a co-receptor for heparin binding growth factors, such as HB-EGF and FGF-2, in pancreatic cancer cells. In the present study, the role of glypican-1 in the regulation of TGF-beta signaling was investigated. Colo-357 pancreatic cancer cells were stably transfected with a full-length glypican-1 antisense construct. Cell growth was determined by MTT and soft agar assays. TGF-beta1 induced p21 expression and Smad2 phosphorylation were analyzed by immunoblotting. PAI-1 promoter activity was determined by luciferase assays. Down-regulation of glypican-1 expression by stable transfection of a full-length glypican-1 antisense construct resulted in decreased anchorage-dependent and -independent cell growth in Colo-357 pancreatic cancer cells and attenuated TGF-beta1 induced cell growth inhibition, Smad2 phosphorylation, and PAI-1 promoter activity. There was, however, no significant difference in TGF-beta1 induced p21 expression and Smad2 nuclear translocation. In conclusion, glypican-1 is required for efficient TGF-beta1 signaling in pancreatic cancer cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号