首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dnaH mutant strain HF4704S, isolated by Sakai et al. (1974), was examined for its effect on phiX174 deoxyribonucleic acid (DNA) synthesis. It was found to carry two mutations affecting DNA synthesis. One mutation had no affect on phiX174 DNA synthesis, but did affect the ability of the mutant cells to form colonies on agar medium at 41 degrees C, and caused host DNA synthesis to cease after 1 h at 41 degrees C. The mutant marker cotransduced with ilvD at a frequency of about 9%. It seems likely that this mutation is in the dnaA gene. The second mutation affected the ability of the mutant cells to form colonies on agar medium supplemented with only 2 mug of thymine per ml, and affected both host and phiX174 DNA synthesis in medium supplemented with only 2 mug of thymine per ml. Both effects could be overcone by adding excess exogenous thymine. We were not able to unambiguously determine the map position of this mutant locus. Our data show that the DNA synthesis phenotype of the mutant strain HE4704S is governed by both these mutations, neither of which directly affects the replication of phiX174 DNA.  相似文献   

2.
A new type of temperature-sensitive deoxyribonucleic acid (DNA) synthesis mutant, which can divide without a completion of DNA replication, was isolated from a thymidine-requiring Escherichia coli strain by means of photo-bromouracil selection after nitrosoguanidine mutagenesis. In this mutant, in spite of the fact that DNA synthesis stopped immediately after the temperature shift from 30 to 41 C, cells could continue to divide, though at a reduced rate. This cell division without DNA synthesis at 41 C is further supported by the following results. (i) Cell division took place at high temperature without addition of thymidine but not at all at 30 C. The parent strain of the mutant did not divide at 41 C without thymidine. (ii) Smaller cells isolated from the culture grown at 41 C did not contain DNA. This was shown by chemical analysis of the smaller cells and on electron micrographs. Ability of cells to divide was examined according to sizes of cells. By using the culture at 30 C, cells of various sizes were separated by means of sucrose-density gradient centrifugation. It was found that all cell fractions, including the smallest one, could divide at high temperature. These results suggest that in this mutant the completion of DNA replication is not required for triggering cell division at high temperature. Heat sensitivity of a factor which links cell division with DNA replication appears to be responsible. Some possible mechanisms of the coordination between cell division and DNA replication are discussed.  相似文献   

3.
Host functions involved in synthesis of parental replicative form of bacteriophage G4 were investigated using various replication mutants of Escheria coli. In dna+ bacteria, conversion of single-stranded viral DNA to replicative form DNA was insensitive to 200 microng/ml of rifampicin or 25 microng/ml of chloramphenicol. At high temperature, synthesis of parental replicative form was unaffected in mutants thermosensitive for dnaA, dnaB, dnaC(D), dnaE or dnaH. In dnaG or dnaZ mutants, however, parental replicative from DNA synthesis was clearly thermosensitive at 43 degrees C. Although the host rep product was essential for viral multiplication, the conversion of single stranded to replicative form was independent of the rep function.  相似文献   

4.
In this paper we present a preliminary characterization of a temperature-sensitive mutant of Bacillus subtilis which appears to be defective in deoxyribonucleic acid (DNA) replication at high temperature. When log-phase cells of the mutant were transferred from 30 to 45 C, protein synthesis and ribonucleic acid synthesis continued more or less normally for several hours, whereas DNA synthesis continued at a normal rate for only 20 to 30 min and then was drastically reduced. The amount of DNA synthesized prior to this reduction corresponded approximately to the amount of DNA synthesized under conditions of protein synthesis inhibition by the parent or mutant strain. After 1 hr of growth at high temperature, cells of the mutant showed a pronounced drop in viable count. After 30 or 60 min of growth at high temperature, DNA synthesis could be restored by lowering the temperature. A longer period of growth at 45 C led to a loss of reversibility of DNA synthesis. Spores of the mutant synthesized no DNA when germinated at high temperature, although an outgrowing cell appeared. When spores were germinated at low temperature until DNA synthesis began, and then were transferred to high temperature, macromolecular synthesis continued as the log-phase transfer experiments described above.  相似文献   

5.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication.  相似文献   

6.
A temperature-sensitive mutant of Bacillus subtilis is defective in deoxyribonucleic acid (DNA) synthesis, contains a lesion in the dnaC locus, and is not primarily an initiation mutant. The amount of DNA synthesized by this mutant at temperatures above 40 C decreases with increasing temperature. DNA synthesis resumes within 20 min after the temperature is lowered to 30 C. In the presence of chloramphenical, DNA synthesis begins at a reduced rate after the temperature is lowered to 30 C. Spores germinated at 46 C cannot initiate DNA replication. The capacity for residual DNA synthesis is stable at the restrictive temperature during inhibition of DNA synthesis. When the temperature is lowered to 30 C after a period of incubation at 43 C, DNA synthesis starts at the origin of the chromosome as well as at preexisting growing points. Similar DNA synthesis patterns are found in mutant cells in vivo and after toluene treatment.  相似文献   

7.
8.
The replication of the bacteriocinogenic plasmid Clo DF13 has been studied in the seven temperature-sensitive Escherichia coli mutants defective in deoxyribonucleic acid (DNA) replication (dnaA-dnaG). Experiments with dna initiation mutants revealed that the replication of the Clo DF13 plasmid depends to a great extent on the host-determined dnaC (dnaD) gene product, but depends slightly on the dnaA gene product. The synthesis of Clo DF13 plasmid DNA also requires the dnaF and dnaG gene products, which are involved in the elongation of chromosomal DNA replication. In contrast, the Clo DF13 plasmid is able to replicate in the dnaB and dnaE elongation mutants at the restrictive temperature. When de novo protein synthesis is inhibited by chloramphenicol in wild-type cells, the Clo DF13 plasmid continues to replicate for at least 12 h, long after chromosomal DNA synthesis has ceased, resulting in an accumulation of Clo DF13 DNA molecules of about 500 copies per cell. After 3 h of chloramphenicol treatment, the Clo DF13 plasmid replicates at a rate approximately five times the rate in the absence of chloramphenicol. Inhibition of protein synthesis by chloramphenicol does not influence the level of Clo DF13 DNA synthesis at the restrictive temperature in the dna mutants, except for the dnaA mutant. Chloramphenicol abolishes the inhibition of Clo DF13 DNA synthesis in the dnaA mutant at the nonpermissive temperature. Under these conditions, Clo DF13 DNA synthesis was slightly stimulated in the first 30 min after the temperature shift, and continued for more than 3 h at an almost uninhibited level.  相似文献   

9.
Y Mano  H Sakai    T Komano 《Journal of virology》1979,30(3):650-656
phi X174am3trD, a temperature-resistant mutant of bacteriophage phi X174am3, exhibited a reduced ability to grow in a dnaP mutant, Escherichia coli KM107, at the restrictive temperature (43 degrees C). Under conditions at which the dnaP gene function was inactivated, the amount and the rate of phi X174am3trD DNA synthesis were reduced. The efficiency of phage attachment to E. coli KM107 at 43 degrees C was the same as to the parental strain, E. coli KD4301, but phage eclipse and phage DNA penetration were inhibited in E. coli KM107 at 43 degrees C. It is suggested that the dnaP gene product, which is necessary for the initiation of host DNA replication, participates in the conversion of attached phages to eclipsed particles and in phage DNA penetration in vivo in normal infection.  相似文献   

10.
Host mutations in Escherichia coli K12 selected for the temperature-sensitive replication of the bacterial plasmid colicinogenic factor E(1) (ColE(1)) exhibit a pleiotropic effect with respect to the effect of the mutation on other extra-chromosomal elements. The mutations also vary with respect to the time of incubation of the cells at 43 degrees C required for complete cessation of ColE(1) DNA synthesis. While the synthesis of the bacterial chromosome appears unaffected, supercoiled ColE(1) DNA replication stops immediately in some mutants and gradually decreases during several generations of cell growth before stopping in others. Mutations isolated in the ColE(1) plasmid resulted in only a gradual cessation of ColE(1) DNA synthesis over several generations of cell growth at 43 degrees C. Conjugal transfer of the ColE(1) and ColV factors occurs normally in the host mutants when the transfer is carried out at the permissive temperature; however, the presence of a group I mutation in the donor cell prohibited conjugal transfer of either plasmid DNA at 43 degrees C to a normal recipient cell. Similarly, the presence of this mutation in the recipient prevented the establishment of ColE(1) or ColV in the mutant recipient cell upon conjugation with a normal donor at 43 degrees C. Various host ColE(1) replication mutants carrying either ColE(1) or ColE(2) were also defective in the mitomycin C-induced production of colicin E(1) or colicin E(2) at 43 degrees C. The majority of the host mutations examined exhibited a temperature sensitivity to growth in deoxycholate in addition to the inhibition of plasmid DNA replication, suggesting a membrane alteration in these mutants when grown at the restrictive temperature.  相似文献   

11.
A new deoxyribonucleic acid polymerase I mutant of Escherichia coli was isolated among conditional lethal mutants. Deoxyribonucleic acid replication in the mutant ceased in 20 min after the temperature was raised to 43 degrees C, and reinitiated when cells were further incubated at this temperature.  相似文献   

12.
The dnaA gene is essential for initiation of chromosomal replication in Escherichia coli. A gene homologous with the E. coli dnaA was found in the replication origin region of the Bacillus subtilis chromosome. We have now isolated a temperature sensitive mutant of the B. subtilis dnaA by in vitro mutagenesis of the cloned gene. At a nonpermissive temperature, 49 degrees C, DNA replication stops completely after 60% increase in a rich medium, while cell mass continues to increase exponentially at 2.5 times the rate at 30 degrees C. A ratio of gene frequency between purA (origin marker) and metB (terminus marker) changes gradually from 2.7 at 30 degrees C to 1.0 in 45 min at 49 degrees C, indicating completion of the ongoing replication cycle. Upon the temperature shift down to 30 degrees C after the incubation at 49 degrees C for 60 min, DNA replication resumes without delay, and the purA/metB ratio increases rapidly to 6, i.e. consecutive initiation of more than two rounds of replication. Addition of chloramphenicol at the time of the temperature shift down did not inhibit the increase in the purA/metB ratio, while rifampicin inhibited the re-initiation completely. The mutation is a single base change from C to T in the dnaA gene resulting in an amino acid substitution from Ser to Phe in the DnaA protein. The mutation was responsible for both temperature sensitive growth and the defect in initiation of chromosomal replication. We observed a remarkable correlation between the amount of DnaA protein and the amount of initiation potential accumulated during incubation at the non-permissive temperature.  相似文献   

13.
Kinetics of minichromosome replication in Escherichia coli B/r.   总被引:11,自引:5,他引:6       下载免费PDF全文
Replication control of the minichromosome pAL2 was found to differ from that of the chromosome in synchronously dividing populations of Escherichia coli B/r. Initiation of minichromosome replication took place at an increasing rate throughout synchronous growth. No coupling to initiation of chromosome replication was detected. Minichromosome replication was further examined in a dnaA5(Ts) temperature-sensitive initiation mutant. When cultures held at nonpermissive temperature (41 degrees C) for 60 min were shifted to permissive temperature (25 degrees C), initiation of both pAL2 and chromosome replication ensued in two waves spaced 25 to 35 min apart. Evidence is presented that minichromosomes terminate replication by passing slowly through a series of dimeric intermediate forms before reaching the closed circular monomeric form. The consequence of this slow passage as a rate-limiting step in the initiation reaction is discussed.  相似文献   

14.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

15.
The saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication and DNA repair processes. Twenty-one site-directed mutations were constructed in the POL30 gene, each mutation changing two adjacently located charged amino acids to alanines. Although none of the mutant strains containing these double-alanine mutations as the sole source of PCNA were temperature sensitive or cold sensitive for growth, about a third of the mutants showed sensitivity to UV light. Some of those UV-sensitive mutants had elevated spontaneous mutation rates. In addition, several mutants suppressed a cold-sensitive mutation in the CDC44 gene, which encodes the large subunit of replication factor C. A cold-sensitive mutant, which was isolated by random mutagenesis, showed a terminal phenotype at the restrictive temperature consistent with a defect in DNA replication. Several mutant PCNAs were expressed and purified from Escherichia coli, and their in vitro properties were determined. The cold-sensitive mutant (pol30-52, S115P) was a monomer, rather than a trimer, in solution. This mutant was deficient for DNA synthesis in vitro. Partial restoration of DNA polymerase delta holoenzyme activity was achieved at 37 degrees C but not at 14 degrees C by inclusion of the macromolecular crowding agent polyethylene glycol in the assay. The only other mutant (pol30-6, DD41,42AA) that showed a growth defect was partially defective for interaction with replication factor C and DNA polymerase delta but completely defective for interaction with DNA polymerase epsilon. Two other mutants sensitive to DNA damage showed no defect in vitro. These results indicate that the latter mutants are specifically impaired in one or more DNA repair processes whereas pol30-6 and pol30-52 mutants show their primary defects in the basic DNA replication machinery with probable associated defects in DNA repair. Therefore, DNA repair requires interactions between repair-specific protein(s) and PCNA, which are distinct from those required for DNA replication.  相似文献   

16.
D J Roufa 《Cell》1978,13(1):129-138
ts14 is a temperature-sensitive Chinese hamster lung cell mutant that ceases protein biosynthesis within a short time of transfer to nonpermissive temperature (Haralson and Roufa, 1975; Roufa and Haralson, 1975; Roufa and Reed, 1975). This mutant contains a revertible, presumably a point mutation that renders its 60S ribosomal subunit thermolabile (Haralson and Roufa, 1975). In this report, we describe the relationship between the conditional ability of ts14 to synthesize protein during S phase and the replication of its DNA.After transfer to nonpermissive temperature (39°C), where ts14 synthesizes protein at a rate approximately 20 fold less than wild-type cells, synchronous cultures of the mutant performed all the processes required for replication of their DNA. During prolonged incubations at nonpermissive temperature, S phase ts14 completed approximately one round of DNA replication semi-conservatively as judged by density-transfer experiments. Pulse-labeling experiments performed on S phase cells revealed that ts14 synthesized the intermediates of discontinuous DNA replication at nonpermissive and permissive temperatures at similar rates. In these tests, the mutant was not substantially different from wild-type at both culture temperatures. At the nonpermissive temperature, however, ts14 synthesized significantly less nuclear protein (that is, histone) than did wild-type cells, and the mutant's chromatin appeared deficient in histone by virtue of its increased sensitivity to nuclease.  相似文献   

17.
Chieko Wada  Takashi Yura 《Genetics》1974,77(2):199-220
A temperature-sensitive DNA replication mutant of E. coli K-12 was isolated among the mutants selected for phenethyl alcohol resistance at low temperatures. This mutation, designated as dnaP18, affects sensitivity of the cell to phenethyl alcohol, sodium deoxycholate and rifampicin, presumably due to an alteration in the membrane structure. At high temperatures (e.g., 42 degrees ), synthesis of DNA, but not RNA or protein, is arrested, leading to the formation of "filaments" in which no septum formation is apparent. Nucleoids observed under electron microscope seem to become dispersed and DNA fibrils less condensed, which may explain the loss of viability under these conditions. Genetic analyses, including reversion studies, indicate that a recessive dnaP mutation located between cya and metE on the chromosome is responsible for both alterations of the membrane properties and temperature sensitivity. The dnaP18 mutation does not affect growth of phage T4 or lambda under conditions where host DNA replication is completely inhibited. Kinetic studies of DNA replication and cell division in this mutant after the temperature shift from 30 to 42 degrees , and during the subsequent recovery at 30 degrees , accumulated evidence suggesting that DNA replication comes to a halt at 42 degrees upon completion of a cycle already initiated before the temperature shift. Since the recovery of DNA synthesis after exposure to 42 degrees does not depend on protein or RNA synthesis or other energy-requiring processes, the product of the mutant dnaP gene appears to be reversibly inactivated at 42 degrees . Taken together with the recessive nature of the present mutation, it was suggested that one of the membrane proteins involved in initiation of DNA replication is affected in this mutant.  相似文献   

18.
A mutant of Bacillus subtilis Ts37 has been isolated in which deoxyribonucleic acid (DNA) synthesis is inhibited at high temperature. The results presented here indicate that the process of initiation of DNA replication is temperature sensitive in this mutant. After shifting to 45 C, DNA increases 40 to 50% before synthesis ceases; an inhibition of protein synthesis permits an equivalent amount of DNA to be synthesized. A density shift experiment coupled with a marker frequency analysis shows that DNA synthesized at 45 C is highly enriched in the markers situated at the end of the chromosome. Transforming DNA extracted from a culture which has been incubated at 45 C exhibits the relative transforming efficiency for origin and terminus markers characteristic of completed chromosomes. After a shift back from 45 C to 30 C, reinitiation appears to occur always in the same region of the bacterial chromosome; in addition, replication as well as cell division is synchronized.  相似文献   

19.
Replication of the thermosensitive drug resistance factor Rts1 was studied at the nonpermissive temperature (42 degrees C). It was concluded from the following observations that replication of this plasmid takes place at 42 degrees C without involving the covalently closed circular (CCC) form of deoxyribonucleic acid (DNA). (i) DNA-DNA- reassociation kinetics studies with purified Rts1 DNA showed that Rts1 DNA increased several-fold during cell growth at 42 degrees C while very little, if any, CCC DNA was synthesized. (ii) When Escherichia coli 20S0(Rts1) was labeled with [3H]thymidine at 42 degrees C, a significant amount of radioactive DNA hybridizable to Rts1 DNA was formed. This DNA was found in a fraction where DNA other than CCC DNA was expected in alkaline sucrose density gradient centrifugation analysis. When E. coli 20S0(Rts1) was labeled at 32 degrees C, the labeled CCC DNA did not disappear during a chase period at 42 degrees C. This indicates that preformed CCC DNA does not participate in replication at the nonpermissive temperature. These results are consistent with the hypothesis that there are two modes of replication of Rts1 DNA, one involving a CCC molecule and the other not involving this form, and that only the latter mode takes place at the nonpermissive temperature.  相似文献   

20.
Escherichia coli W3110 was grown in a chemostat under conditions of carbon limitation at various temperatures and specific growth rates (mu). Exponential survivor-time curves following cold osmotic shock were biphasic. These could be described by the sum of two exponential functions representing the survival of sensitive and resistant fractions of the population where the size of the sensitive fraction was directly proportional to mu. Decimal reduction times for the more resistant fraction were unaffected by mu yet decreased with increasing growth temperature. Sensitivity to cold shock was evaluated for an E. coli CR34 mutant, temperature-sensitive in initiation of DNA replication. When grown in the chemostat at the non-restrictive temperature (30 degrees C) sensitivity was directly proportional to mu. Following a rise in the incubation temperature to 42 degrees C, sensitivity decreased markedly and reached a minimum 45 to 60 min after the temperature increase. Sensitivity of the E. coli mutant grown at 30 degrees C and raised to 42 degrees C for 1 h was low and relatively unaffected by growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号