首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Many neurodegenerative diseases are characterized by ubiquitin-positive protein aggregates or inclusion bodies. Ubiquitin-conjugated proteins are degraded by the 20/26S proteasome, and reduced proteasome peptidase activities in brain homogenates have been reported in pathologic lesions of Parkinson's and Alzheimer's diseases. However, it is unknown whether crude extracts of human brain contain other proteases having peptidase activities. We found a novel protease of molecular weight of approximately 105 kDa in normal human brain, which exhibited trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities (corresponding to 52% and 21% of the total activities in crude extracts) but not peptidyl glutamyl peptide hydrolase activity. Both T-L and ChT-L activities of this protease were partially inhibited by proteasome inhibitors (MG132, lactacystin) and, in contrast to those of the proteasome, also by sodium dodecyl sulfate. A simple method to obtain a brain fraction specific to the 20/26S proteasome was developed. Our human brain data suggest that T-L and ChT-L activity levels of the proteasome reported previously may include those of the 105 kDa protease, an enzyme of as yet unknown biological significance, and that it is necessary to separate the proteasome from this protease to evaluate the actual status of the ubiquitin-proteasome system in neurodegenerative disorders.  相似文献   

2.
The proteasomes are the major intracellular proteolytic systems involved in the removal of altered proteins. In this study, we examined different susceptibilities of constitutive (XYZ) and interferon-gamma inducible (LMP) 20S proteasomes, isolated from bovine brain and thymus, respectively, to peroxynitrite-mediated oxidation. Exposure of XYZ and LMP proteasomes to increasing amounts of peroxynitrite resulted in different levels, in the two enzymes, of 3-nitrotyrosine groups and tryptophan residues oxidation. 1-Anilino-8-naphtalene-sulfonic acid binding studies and quenching of tryptophan residues indicated that the LMP complex was more sensitive to peroxynitrite. Regarding the proteolytic activities, the XYZ proteasome showed an overall activation (even if the trypsin-like (T-L) component was 20% inhibited), with the peptidyl-glutamyl peptide-hydrolyzing (PGPH) and branched-chain amino acid-preferring (BrAAP) activities being the most stimulated. On the other end, the LMP proteasome was inhibited, especially the BrAAP activity, whereas the T-L activity was not affected. Furthermore, exposure to increasing amounts of peroxynitrite induced a gradual decrease of beta-casein degrading rate by the LMP proteasome, whereas it did not influence the constitutive complex. Our results indicated that peroxynitrite caused a mild modification of the XYZ complex, leading to activation of its catalytic activities. Differently, the LMP proteasome showed a more significant conformational change resulting in the inhibition of the proteolytic functions.  相似文献   

3.
Molecular forms of aconitase and their interconversions.   总被引:2,自引:0,他引:2       下载免费PDF全文
Aconitase, as isolated from mammalian mitochondria by traditional methods, is virtually inactive and contains an oxidized [3Fe-4S]+ cluster. The activation of the enzyme and attendant conformational change have been studied by monitoring the changes in activity, in tryptophan fluorescence, and in the electron paramagnetic resonance of the cluster on incubation with dithionite, with and without added Fe2+. Restoration of the full activity is achieved with one electron per 3Fe cluster and at least 0.6 g-atoms of Fe2+ per mol. The process involves building up of [4Fe-4S]2+ clusters. Other metal ions do not substitute for Fe2+. Reduction alone, in the absence of added Fe2+, yields up to 70% of the maximum activity, but requires approx. 1.8 electrons of reductant per cluster. The results presented are consistent with the view that activation without added Fe2+ involves the destruction of some of the [3Fe-4S] clusters and the incorporation of the Fe so liberated into other clusters to yield a tetra-nuclear one. In particular, the effect of EDTA and of other iron chelators in inhibiting activation by dithionite alone is in accord with this view, although recent magnetic-circular-dichroism studies do not support this interpretation. The rates of increase in activity and tryptophan fluorescence are the same when Fe2+ is present, but in its absence, activation is very much slower than the increase in fluorescence, suggesting that the protein conformational change triggered by reduction of the Fe-S clusters precedes the insertion of the iron. Consistent with this view is the observation that iron chelators inhibit activation by dithionite, but not the increase in fluorescence and, hence, the conformational change. The results are discussed in light of data in the literature on the forms of the cluster and its possible function in catalysis.  相似文献   

4.
The effect of heat shock protein 90 (Hsp-90) and several other proteins on the catalytic activities of the 20 S proteasome (MPC) was examined. The chymotrypsin-like (ChT-L) and peptidylglutamyl-peptide hydrolyzing (PGPH) activities of the pituitary MPC were inhibited by Hsp-90 with IC50 values of 8 and 28 nM, respectively. Bovine serum albumin and two other proteins tested inhibited the same activities with much higher IC50 values. The trypsin-like and branched-chain amino-acid-preferring activities were not affected by any of the proteins. None of the activities of the bovine spleen MPC, an enzyme form in which the X, Y, and Z subunits are virtually completely replaced by the LMP2, LMP7, and LMP10 subunits, was affected by either Hsp-90 or the other proteins tested. Hsp-90 inhibited the degradation of the oxidized B-chain of insulin by the pituitary MPC but not by its spleen counterpart. The PA28 activator (11 S regulator; REG) of the proteasome abolished the inhibitory effect of Hsp-90 and other proteins on the ChT-L and PGPH activities of the pituitary MPC. It is suggested that Hsp-90 induces conformational changes that affect the ChT-L and PGPH activities expressed by the X and Y subunits, respectively, but does not affect the activities expressed by LMP subunits.  相似文献   

5.
M Orlowski 《Biochemistry》2001,40(50):15318-15326
Two distinct activities cleaving bonds after hydrophobic amino acids have been identified in the bovine pituitary 20 S proteasome. One, expressed by the X subunit, that cleaves bonds after aromatic and branched chain amino acids was designated as chymotrypsin-like (ChT-L).(1) The second, expressed by the Y subunit, that cleaves bonds after acidic amino acids was designated as peptidylglutamyl-peptide hydrolyzing (PGPH) but also cleaves bonds after branched chain amino acids. Low micromolar concentrations of the arginine-rich histone H3 (H3) are shown to induce changes in the specificity of the proteasome by selectively activating cleavages after branched chain and acidic amino acids while inhibiting cleavage of peptidyl-arylamide bonds in synthetic substrates. H3 activates 15-fold cleavage after leucine but not phenylalanine residues in model synthetic substrates. The activation is associated with a decrease in K(m) and an increase in V(max), suggesting positive allosteric activation. H3 activates more than 60-fold degradation of the oxidized B-chain of insulin, by cleaving mainly bonds after acidic and branched chain amino acids, and accelerates the degradation of casein and lysozyme, the latter in the presence of dithiothreitol. The degradation of lysozyme in the presence of H3 generates fragments that differ from those in its absence, indicating H3-induced specificity changes. H3 inhibits cleavage of the Trp3-Ser4 and Tyr5-Gly6 bonds in gonadotropin releasing hormone, bonds cleaved by the ChT-L activity in the absence of H3. The results suggest H3-selective activation of the Y subunit and specificity changes that could potentially affect proteasomal function in the nuclear compartment.  相似文献   

6.
Wheat sprouts contain a very high level of organic phosphates and a powerful cocktail of different molecules such as enzymes, reducing glycosides and polyphenols. The antioxidant properties of wheat sprouts have been widely documented and it has been shown that they are able to protect DNA against free-radicals mediated oxidative damage. Furthermore, we have recently reported on the effects of several polyphenols on 20S proteasomes, underlying the dual role of epigallocatechin-3-gallate as an antioxidant and a proteasome effector in cancer cells. The aim of this study was to investigate the effects of wheat sprout extracts on 20S proteasome functionality. Wheat sprout extracts have been analysed and characterized for their polyphenolic content using the Folin-Ciocalteau reagent and RP-HPLC technique. Comparing our data with a polyphenol standard mixture we identified five different polyphenols: gallic acid, epigallocatechin-3-gallate, epigallocatechin, epicatechin and catechin. The treatment of isolated 20S proteasomes with the extract induced a gradual inhibition of all the tested components, ChT-L, T-L, PGPH and BrAAP, in both the complexes. At low extract concentration a slight activation of the enzyme was evident only for the BrAAP component of the constitutive enzyme and the ChT-L activity of the immunoproteasome. beta-casein degradation rate decreased, particularly with the immunoproteasome. Human Colon adenocarcinoma (Caco) cells, stimulated with 12-O-tetradecanoylphorbol-13-acetate, showed activation of the 20S proteasome activities at short incubation times and an increase in intracellular oxidative proteins. Cells treatment with wheat sprout extract led to proteasome inhibition in unstimulated cells and attenuated the effects mediated by TPA. Finally, exposure to the extract affected the expression levels of pro-apoptotic proteins.  相似文献   

7.
The effect of oxidative stress induced by neurotoxic metal ions on the properties of the brain 20S proteasome or multicatalytic proteinase complex (MPC) has been studied. Exposure of the 20S proteasome to increasing amounts of Fe(III), Fe(II), Cu(II) or Zn(II) affects its main hydrolytic activities: trypsin-like (T-L), chymotrypsin-like (ChT-L), peptidylglutamyl-peptide hydrolase (PGPH), branched-chain amino acid preferring (BrAAP) and caseinolytic activities, although in different ways. T-L activity showed gradual activation by both iron ions but inhibition by Cu(II) and Zn(II). ChT-L and PGPH activities were inhibited whereas BrAAP activity was widely activated by all the tested metal salts except for zinc ions. Moreover, the exposure to ferrous salt increased the degradation rate of casein. The functional effects appear to be linked to oxidation-induced modifications, as demonstrated by an increase of carbonyl groups following the exposure to metal ions. In addition, modifications induced by ferrous salt on the catalytic subunits were also supported by western blot analyses performed using anti-X, anti-Y and anti-Z antibodies. The results obtained clearly indicate that metal-catalyzed oxidation strongly affects the functions of the brain 20S proteasome, even though the catalytic subunits seem to be differently influenced by oxidative phenomena.  相似文献   

8.
Studies of the iodide ion quenching of the intrinsic fluorescence of Concanavalin A indicate that 50% of the tryptophyl fluorescence originates from exposed residues. This agrees with the X-ray crystallographic determination that two of the four tryptophan residues in a Concanavalin A monomer are on the surface. Previous studies have indicated that conformational changes induced by sugar binding alter the environment of aromatic residues. The present investigation finds that neither the specific binding of alpha-methyl-D-mannoside nor alteration of the Concanavalin A quaternary structure changes the number or accessibility of the solvent-exposed tryptophan residues. It therefore appears that the major conformational transitions in Concanavalin A do not affect steric access to the surface tryptophans and the effects previously observed may be ascribed to structurally internal tryptophan residues.  相似文献   

9.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   

10.
ATP binding to myosin subfragment 1 (S1) induces an increase in tryptophan fluorescence. Chymotryptic rabbit skeletal S1 has 5 tryptophan residues (Trp113, 131, 440, 510 and 595), and therefore the identification of tryptophan residues perturbed by ATP is quite complex. To solve this problem we resolved the complex fluorescence spectra into log-normal and decay-associated components, and carried out the structural analysis of the microenvironment of each tryptophan in S1. The decomposition of fluorescence spectra of S1 and S1-ATP complex revealed 3 components with maxima at ca. 318, 331 and 339-342 nm. The comparison of structural parameters of microenvironment of 5 tryptophan residues with the same parameters of single-tryptophan-containing proteins with well identified fluorescence properties applying statistical method of cluster analysis, enabled us to assign Trp595 to 318 nm, Trp440 to 331 nm, and Trp 13, 131 and 510 to 342 nm spectral components. ATP induced an almost equal increase in the intensities of the intermediate (331 nm) and long-wavelength (342 nm) components, and a small decrease in the short component (318 nm). The increase in the intermediate component fluorescence most likely results from an immobilization of some quenching groups (Met437, Met441 and/or Arg444) in the environment of Trp440. The increase in the intensity and a blue shift of the long component might be associated with conformational changes in the vicinity of Trp510. However, these conclusions can not be extended directly to the other types of myosins due to the diversity in the tryptophan content and their microenvironments.  相似文献   

11.
色氨酸残基在内切葡聚糖酶分子中的作用   总被引:13,自引:0,他引:13  
内切葡聚糖酶的化学修饰研究表明:色氨酸残基可能位于活性位点,与底物结合有关.荧光光谱测定指出该酶的荧光几乎都来自色氨酸残基,酶分子中色氨酸微环境对pH变化非常敏感,降低pH导致了酶分子构象发生了较大变化,配基结合使酶分子色氨酸微环境产生了改变,引发了与pH诱导不同的构象变化.  相似文献   

12.
Förster A  Whitby FG  Hill CP 《The EMBO journal》2003,22(17):4356-4364
The 20S proteasome is a large multisubunit assembly that performs most of the intracellular non-lysosomal proteolysis of eukaryotes. Substrates access the proteasome active sites, which are sequestered in the interior of the barrel-shaped structure, through pores that are opened by binding of activator complexes. The crystal structure of yeast proteasome in complex with an 11S activator suggested that activation results from disordering of the proteasome gate residues. Here we report further analysis of this structure, which demonstrates that, in contrast to earlier models, the activated proteasome adopts an ordered 7-fold symmetric pore conformation that is stabilized by interactions formed by a cluster of highly conserved proteasome residues (Tyr8, Asp9, Pro17 and Tyr26). One non-canonical cluster, which appears to be mandated by the requirement that eukaryotic proteasomes also form an ordered closed conformation, explains all deviations from perfect conservation of these residues. We also demonstrate the importance of these conserved residues for proteolysis by an archaeal proteasome. Evolutionary considerations suggest that other activators might induce the same open proteasome conformation as seen with the 11S activator.  相似文献   

13.
C Cardozo  C Michaud  M Orlowski 《Biochemistry》1999,38(30):9768-9777
Two catalytic components of the multicatalytic proteinase complex (MPC, proteasome) designated as chymotrypsin-like (ChT-L) and branched chain amino acid preferring (BrAAP) cleave bonds after hydrophobic amino acids. The possible involvement of the ChT-L and peptidylglutamyl-peptide hydrolyzing (PGPH) activities in the cleavage of bonds attributed to the BrAAP component was examined. Several inhibitors of the ChT-L activity containing a phenylalaninal group did not affect the BrAAP activity at concentrations that were more than 150 times higher than their K(i) values for the ChT-L activity. Concentrations of lactacystin that inactivated more than 90% of the ChT-L activity had no effect on the BrAAP activity. Concentrations of 3,4-dichloroisocoumarin (DCI) that inactivated the ChT-L activity activated by up to 10-fold the BrAAP activity toward synthetic substrates and by more than 2-fold the degradation of the insulin B chain in a reaction not inhibited by Z-LGF-CHO, a selective inhibitor of the ChT-L activity. These findings are incompatible with any significant involvement of the ChT-L activity in the cleavage of BrAAP substrates. Both the native and DCI-treated MPC cleaved the insulin B chain mainly after acidic residues in a reaction inhibited by Z-GPFL-CHO, an inhibitor of the BrAAP and PGPH activities. DCI exposure did not result in acylation of the N-terminal threonine in the active site of the Y subunit. These results suggest involvement of the PGPH activity in the cleavage of BrAAP substrates, but this conclusion is incompatible with DCI activation of the BrAAP activity and inactivation of the PGPH activity, and with the finding that proteins inhibiting the PGPH activity had no effect on the BrAAP activity. Rationalization of these contradictions is discussed.  相似文献   

14.
Mn2+ ions influence the activity, temperature dependence, and thermostability of the psychrophilic Shewanella-PPase (Sh-PPase), and are required to function in cold environments. The functional characteristics of Sh-PPase on activation with Mn2+ ions are possibly related to conformational changes in the molecule. In this study, conformational changes of Sh-PPase on activation with Mn2+ ions were analyzed in solution by fluorescence spectroscopy analysis of intrinsic tryptophan residues, 1-anilino-8-naphthalene sulfonate fluorescence, and circular dichroism spectroscopy. For Sh-PPase, Mn2+ ions did not affect the flexibility of the tryptophan residues and secondary structure of the enzyme. However, the microenvironment of the tryptophan residues and surface area of Sh-PPase were more hydrophilic on activation with Mn2+ ions. These results indicate that activation with Mn2+ ions causes conformational changes around the aromatic amino acid residues and affects the hydrophobicity of the enzyme surface, which results in conformational changes. Substrate-induced conformational changes reflect that metal-free Sh-PPase in solution indicated an open structure and will be a close structure when binding substrate. In combination of our spectroscopic analyses on Sh-PPase, it can be concluded that activation with Mn2+ ions changes some conformation of Sh-PPase molecule in solution.  相似文献   

15.
The changes in the intrinsic fluorescence, primarily from tryptophan residues, of sheep erythrocyte membranes following X-irradiation (0--4000 R) were investigated. The experiments showed that there was (1) a decrease in the intensity of fluorescence with increasing dose of X-rays, (2) a small shift of fluorescence emission to longer wavelengths, (3) a decrease in the fluorescence polarization, and that (4) treatment of membranes with a perturbing solvent, 2-chloroethanol, can eliminate the effects of X-rays. The amount of tryptophan in the membranes was not altered after X-irradiation. It was also shown that sulphydryl reagents, N-ethylmaleimide and 2,2'-dithiodipyridine, induced similar fluorescence changes. From these results it was concluded that the fluorescence changes could result from a change in the environment surrounding tryptophan residues, from being relatively non-polar to being more polar, implying that conformational changes of membrane proteins are brought about by low doses of X-rays.  相似文献   

16.
The physical properties and conformational dynamics of the Salmonella typhimurium ribose and galactose receptors have been examined. Studies involving circular dichroism, fluorescence, absorption spectroscopy, and sedimentation analysis show that the two receptor proteins have different morphologies and exhibit diverse responses to sugar binding. The ribose receptor lacks both tryptophan and disulfide residues, and the galactose receptor lacks disulfides and has only a single tryptophan residue. By virtue of these fortuitous properties, the conformational changes induced in these proteins by sugar binding can be dissected by utilizing a variety of physical probes. A ligand-induced conformational change in the ribose receptor is shown by circular dichroism and fluorescence spectroscopy, which reveal spectral changes assignable to tyrosine, phenylalanine, and methionine residues. A conformational change in the galactose receptor has been demonstrated by fluorescence spectroscopy involving the distant reporter group method, which shows changes assignable to tryptophan and methionine sites and which is corroborated by sedimentation analysis. It is clear that there are extensive conformational changes in the two receptor proteins and that the different physical methods provide complementary information on the nature of these changes.  相似文献   

17.
Crystal structures of Gαi (and closely related family member Gαt) reveal much of what we currently know about G protein structure, including changes which occur in Switch regions. Gαt exhibits a low rate of basal (uncatalyzed) nucleotide exchange and an ordered Switch II region in the GDP‐bound state, unlike Gαi, which exhibits higher basal exchange and a disordered Switch II region in GαiGDP structures. Using purified Gαi and Gαt, we examined the intrinsic tryptophan fluorescence of these proteins, which reports conformational changes associated with activation and deactivation of Gα proteins. In addition to the expected enhancement in tryptophan fluorescence intensity, activation of GαGDP proteins was accompanied by a modest but notable red shift in tryptophan emission maxima. We identified a cation‐π interaction between tryptophan and arginine residues in the Switch II of Gαi family proteins that mediates the observed red shift in emission maxima. Furthermore, amino‐terminal myristoylation of Gαi resulted in a less polar environment for tryptophan residues in the GTPase domain, consistent with an interaction between the myristoylated amino terminus and the GTPase domain of Gα proteins. These results reveal unique insights into conformational changes which occur upon activation and deactivation of G proteins in solution.  相似文献   

18.
Enzyme I of the bacterial phosphotransferase system is a protein component which undergoes a temperature-dependent monomer/dimer equilibrium. Reaction of sulfhydryl residues with SH-specific reagents inhibits both activity and dimerization. There are four cysteine residues available in each subunit, one of which (Cys 502) is proximate to one of the two tryptophan residues (Trp 498). Previous studies revealed two major lifetimes and spectra, suggesting distinct environments for tryptophan. In this paper, we examine the dynamic quenching of tryptophanyl fluorescence that occurs when an energy transfer acceptor, thio-2-nitrobenzoic acid (TNB), is covalently attached to the sulfhydryl groups. More precisely, we have traced the recovery of nativelike fluorescence lifetime components (and the concomitant loss of "reduced lifetime" amplitudes) that accompanies TNB release. The course of lifetime changes seen when a reducing reagent removes the quencher may be sensitive to a variety of effects, including different SH affinities, different proximities to Trp, changing availability for dimerization, or conformational changes. The prospective value of separating each lifetime component from the mixture is illustrated.  相似文献   

19.
We previously reported that sperm proteasome is responsible for degradation of the ubiquitinated vitelline-coat during fertilization in the ascidian Halocynthia roretzi. Here, we report the roles in fertilization and localization in the sperm cell surface of H. roretzi sperm proteasome. An anti-proteasome antibody, as well as the proteasome inhibitors MG115 and MG132, inhibited the fertilization, indicating that the sperm proteasome functions extracellularly in ascidian fertilization. In order to further assess this issue, the sperm surface proteasome activity was labeled with a cell-impermeable labeling reagent, NHS-LC-biotin, extracted with 0.1% CHAPS, and was subjected to a pull-down assay with avidin-agarose beads. It was found that a substantial amount of sperm proteasome is exposed to the cell surface. Partition analysis with Triton X-114 also revealed that a considerable amount of the sperm proteasome activity is partitioned into a lipid layer. Localization of the proteasome activity was investigated by fluorescence microscopy with succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide as a substrate. The sperm proteasome activity was specifically detected in the sperm head region, and it was markedly activated upon sperm activation. The membrane-associated proteasome was purified from the membrane fraction of H. roretzi sperm by affinity chromatography using an anti-20S proteasome antibody-immobilized Sepharose column. SDS-PAGE of the purified preparation showed a similar pattern of subunit composition to that of the 26S proteasome of mammalian origin. Taken together, these results indicate that H. roretzi sperm has the membrane-associated proteasome on its head, which is activated upon sperm activation, and that sperm proteasome plays an essential role in H. roretzi fertilization.  相似文献   

20.
L Fetler  P Tauc  G Hervé  M M Ladjimi  J C Brochon 《Biochemistry》1992,31(49):12504-12513
Aspartate transcarbamylase (EC 2.1.3.2) contains two tryptophan residues in position 209 and 284 of the catalytic chains (c) and no such chromophore in the regulatory chains (r). Thus, as a dodecamer [(c3)2(r2)3] the native enzyme molecule contains 12 tryptophan residues. The present study of the regulatory conformational changes in this enzyme is based on the fluorescence properties of these intrinsic probes. Site-directed mutagenesis was used in order to differentiate the respective contributions of the two tryptophans to the fluorescence properties of the enzyme and to identify the mobility of their environment in the course of the different regulatory processes. Each of these tryptophan residues gives two independent fluorescence decays, suggesting that the catalytic subunit exists in two slightly different conformational states. The binding of the substrate analog N-phosphonacetyl-L-aspartate promotes the same fluorescence signal whether or not the catalytic subunits are associated with the regulatory subunits, suggesting that the substrate-induced conformational change of the catalytic subunit is the essential trigger for the quaternary structure transition involved in cooperativity. The binding of the substrate analog affects mostly the environment of tryptophan 284, while the binding of the activator ATP affects mostly the environment of tryptophan 209, confirming that this activator acts through a mechanism different from that involved in homotropic cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号