首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary spinal cord trauma can trigger a cascade of secondary processes leading to delayed and amplified injury to spinal cord neurons. Release of fatty acids, in particular arachidonic acid, from cell membranes is believed to contribute significantly to these events. Mechanisms of fatty acid-induced injury to spinal cord neurons may include lipid peroxidation. One of the major biologically active products of arachidonic acid peroxidation is 4-hydroxynonenal (HNE). The levels of HNE-protein conjugates in cultured spinal cord neurons increased in a dose-dependent manner after a 24-h exposure to arachidonic acid. To study cellular effects of HNE, spinal cord neurons were treated with different doses of HNE, and cellular oxidative stress, intracellular calcium, and cell viability were determined. A 3-h exposure to 10 microM HNE caused approximately 80% increase in oxidative stress and 30% elevation of intracellular calcium. Exposure of spinal cord neurons to HNE caused a dramatic loss of cellular viability, indicated by a dose-dependent decrease in MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-s ulfophenyl)- 2H-tetrazolium, inner salt] conversion. The cytotoxic effect of HNE was diminished by pretreating neurons with ebselen or N-acetylcysteine. These data support the hypothesis that formation of HNE may be responsible, at least in part, for the cytotoxic effects of membrane-released arachidonic acid to spinal cord neurons.  相似文献   

2.
Hydrolysis of membrane phospholipids of spinal cord neurons is one of the first events initiated in spinal cord trauma. In this process, free fatty acids, and in particular arachidonic acid, are released. Exposure of spinal cord neurons to free arachidonic acid can compromise cell survival and initiate apoptotic cell death. In order to determine potential mechanisms of apoptosis induced by arachidonic acid, activation of caspases -3, -8, and -9, as well as the release of cytochrome c into the cytoplasm were measured in cultured spinal cord neurons exposed to 10 microM of this fatty acid. In addition, because nicotine can exert a variety of neuroprotective effects, we hypothesized that it can prevent arachidonic acid induced apoptosis of spinal cord neurons. To study this hypothesis, spinal cord neurons were pretreated with nicotine (10 microM for 2 h) before arachidonic acid exposure and caspase activation as well as markers of apoptotic cell death were studied. Treatment of spinal cord neurons with arachidonic acid for up to 24 h significantly increased cytoplasmic levels of cytochrome c, induced caspase activation and induced DNA laddering, a hallmark of apoptotic cell death. Nicotine pretreatment markedly attenuated all these effects. In addition, antagonist studies suggest that the alpha7 nicotinic receptor is primarily responsible for these anti-apoptotic effects of nicotine. These results indicate that nicotine can exert potent neuroprotective effects by inhibiting arachidonic acid induced apoptotic cascades of spinal cord neurons.  相似文献   

3.
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA-damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured animals when compared to acute and chronic sham groups. Our data has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.  相似文献   

4.
5.
Traumatic spinal cord injury has recently been shown to cause a rapid increase in free fatty acids (FFAs) and lipid degradation in cats. The present studies report a more delayed, time-dependent increase in FFAs and a concomitant decrease in phospholipids following traumatic spinal injury in rats. The largest percentage increases were found for polyunsaturated fatty acids, particularly arachidonic acid. Associated with these changes were a reduction in the activity of Na+,K+-ATPase and development of spinal cord edema. These findings support the hypothesis that traumatic spinal cord injury leads to delayed, as well as early, hydrolysis of membrane phospholipids, resulting in the liberation of FFAs. Such changes may contribute to secondary spinal cord injury either through direct effects on membranes or through the actions of secondary metabolic products such as the eicosanoids. The latter may cause tissue injury by contributing to the reduction in spinal cord blood flow or through inflammatory responses that follow trauma.  相似文献   

6.
The effect of severe incomplete ischemia, induced by abdominal aorta ligation for 40 minutes, and subsequent recirculation for one and four days on accumulation of free fatty acids was studies in the lumbar and cervical part of rabbit spinal cord. Changes in free fatty acid levels were determined separately in gracile fascicle (Fg), dorsal part (Dp, without Fg) and ventral part (Vp) of both spinal cord regions. In lumbar spinal cord increases in free fatty acid levels, especially that of arachidonate, were observed in Fg, Dp and Vp a the end of the ischemic period. During recirculation all values were similar to nonischemic controls. In cervical spinal cord a slight increase in free fatty acid levels was found in Fg after four days of recirculation, and in Dp arachidonate and stearate levels were most markedly elevated after one day of recirculation. No changes at any interval were found in Vp of cervical spinal cord. The present results indicate that the experimental insult induced typical ischemic injury to spinal cord tissue demonstrated by fatty acid liberation from membrane lipids. This injury may affect neurotransmission and other processes and free fatty acids themselves impair tissue metabolism (inhibition of oxidative phosphorylation, edema precipitation, synthesis of eicosanoids) and thus restrict the possibilities to enhance recovery in the recirculation period.  相似文献   

7.
8.
It is well known that oxidative stress damages bimolecules such as DNA and lipids. No study is available on the morphine-induced oxidative damage and fatty acids changes in brain and spinal tissues. The aim of this work was to determine the effects of morphine on the concentrations and compositions of fatty acid in spinal cord segments and brain tissues in rabbits as well as lipid peroxidation (LP) and glutathione (GSH) levels in cortex brain. Twelve New Zealand albino rabbits were used and they were randomly assigned to two groups of 6 rabbits each. First group used as control although morphine administrated to rats in second group. Cortex brain and (cervical, thoracic, lumbar) samples were taken. The fatty acids between n:18.0 and 21.0 were present in spinal cord sections and n:10 fatty acids in control animals were present in the brain tissues. Compared to n:20.0–24.0 fatty acids in spinal cord sections and 8.0 fatty acids in the brain tissues of drug administered animals. The concentration and composition of the fatty acid methyl esters in spinal cord and brain tissues was decreased by morphine treatments. LP levels in the cortex brain were increased although GSH levels were decreased by the morphine administration. In conclusion, unsaturated fatty acids contents in brain and spinal cord sections and GSH were reduced by administrating spinal morphine although oxidative stress as LP increased. The inhibition oxidative damage may be a useful strategy for the development of a new protection for morphine administration as well as opiate abuse.  相似文献   

9.
Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 (CYP2E1) and in HepG2 E47 cells, which express CYP2E1. The possible role of mitogen-activated protein kinase (MAPK) members in this process was evaluated. SB203580, a p38 MAPK inhibitor, and PD98059, an ERK inhibitor, but not wortmannin a phosphatidylinositol 3-kinase (PI3K) inhibitor, prevented AA toxicity in pyrazole hepatocytes and E47 cells. SB203580 prevented the enhancement of AA toxicity by salicylate. SB203580 neither lowered the levels of CYP2E1 nor affected CYP2E1-dependent oxidative stress. The decrease in mitochondrial membrane potential produced by AA was prevented by SB203580. Treating CYP2E1-induced cells with AA activated p38 MAPK but not ERK or AKT. This activation was blocked by antioxidants. AA increased the translocation of NF-kappaB to the nucleus. Salicylate blocked this translocation, which may contribute to the enhancement of AA toxicity by salicylate. SB203580 restored AA-induced NF-kappaB translocation, which may contribute to protection against toxicity. In conclusion, AA toxicity was related to lipid peroxidation and oxidative stress, and to the activation of p38 MAPK, as a consequence of CYP2E1-dependent production of reactive oxygen species. Activation of p38 MAPK by AA coupled to AA-induced oxidative stress may synergize to cause cell toxicity by affecting mitochondrial membrane potential and by modulation of NF-kappaB activation.  相似文献   

10.
Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases   总被引:10,自引:0,他引:10  
1. Polyunsaturated fatty acids are essential for normal neural cell membrane functioning because many membrane properties, such as fluidity and permeability, are closely related to the presence of unsaturated and polyunsaturated side chains. Lipid peroxidation results in loss of membrane polyunsaturated fatty acids and oxidized phospholipids as polar species contributing to increased membrane rigidity.2. Polyunsaturated fatty acids are released from membrane phospholipids by a number of enzymic mechanisms involving the receptor-mediated stimulation of phospholipase A2 and phospholipase C/diacylglycerol lipase pathways.3. The overstimulation of excitatory amino acid (EAA) receptors stimulates the activities of lipases and phospholipases, and this stimulation produces changes in membrane phospholipid composition, permeability, and fluidity, thus decreasing the integrity of plasma membranes.4. Alterations in properties of plasma membranes may be responsible for the degeneration of neurons seen in neurodegenerative diseases. Two major processes may be involved in neuronal injury caused by the overstimulation of EAA receptors. One is a large Ca2+ influx and the other is an accumulation of free radicals and lipid peroxides as a result of neural membrane phospholipid degradation. It is suggested that calcium and free radicals act in concert to induce neuronal injury in acute trauma (ischemia and spinal cord injury) and in neurodegenerative diseases.  相似文献   

11.
Li Q  Li J  Zhang L  Wang B  Xiong L 《Life sciences》2007,80(12):1087-1093
Hyperbaric oxygen (HBO) preconditioning can induce ischemic tolerance in the spinal cord. The effect can be attenuated by the administration of an oxygen free radical scavenger or by inhibition of antioxidant enzymes. However, the mechanism underlying HBO preconditioning of neurons against ischemic injury remains enigmatic. Therefore, in the present study primary cultured spinal cord neurons were treated with HBO and then subjected to a hydrogen peroxide (H(2)O(2)) insult. The results show that H(2)O(2) stimulation of the cultured spinal neurons caused severe DNA damage and decreased cell viability, and that these neurons were well protected against damage after a single exposure to HBO preconditioning (0.35 MPa, 98% O(2), 37 degrees C, 2 h). The protective effect started 4 h after pretreatment and lasted for at least 24 h. The cultured neurons after HBO treatment also exhibited increased heme oxygenase-1 (HO-1) expression at both the protein and mRNA levels, which paralleled the protective effect of HBO. Treatment with tin-mesoporphyrin IX (SnMP), a specific HO-1 inhibitor, before HBO pretreatment abolished the HBO-induced adaptive protection noted in the cultured spinal neurons. In conclusion, HBO preconditioning can protect primary cultured spinal cord neurons against oxidative stress, and the upregulation of HO-1 expression plays an essential role in HBO induced preconditioning effect.  相似文献   

12.
Segler-Stahl  K.  Demediuk  P.  Castillo  R.  Watts  C.  Moscatelli  E. A. 《Neurochemical research》1985,10(4):563-569
Experimental spinal cord trauma was produced in 3-month-old SS-1 minature pigs by dropping a 25 g weight from a height of 20 cm upon the exposed spinal cord. The histological lesion consisted of edema and hemorrhage. Phospholipid concentration and composition, cholesterol concentration and phospholipid fatty acid composition were determined in whole spinal cord 3 hours after injury, and in spinal cord myelin 5 hours after injury. Three hours after injury phospholipid and cholesterol concentration were decreased by about 14% in the whole spinal cord. Trauma had no effect on the phospholipid composition of whole spinal cord and myelin. Fatty acid composition of myelin also did not change after injury, and changed very slightly in the whole spinal cord. It is concluded that edema following spinal cord trauma is much more extensive than previously assumed. Furthermore, peroxidation of membrane lipid fatty acids does not appear to be a significant factor in spinal cord pathology 3 hours after injury.  相似文献   

13.
Lipolytic products of triglyceride-rich lipoproteins, i.e., free fatty acids, may cause activation and dysfunction of the vascular endothelium. Mechanisms of these effects may include lipid peroxidation. One of the major and biologically active products of peroxidation of n-6 fatty acids, such as linoleic acid or arachidonic acid, is the aldehyde 4-hydroxynonenal (HNE). To study the hypothesis that HNE may be a critical factor in endothelial cell dysfunction caused by free fatty acids, human umbilical endothelial cells (HUVEC) were treated with up to160 microM of linoleic or arachidonic acid. HNE formation was detected by immunocytochemistry in cells treated for 24 h with either fatty acid, but more markedly with arachidonic acid. To study the cellulareffects of HNE, HUVEC were treated with different concentrations of this aldehyde, and several markers of endothelial cell dysfunction were determined. Exposure to HNE for 6 and 9 h resulted in increased cellular oxidative stress. However, short time treatment with HNE did not cause activation of nuclear factor-kappaB (NF-kappaB). In addition, HUVEC exposure to HNE caused a dose-dependent decrease in production of both interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1). On the other hand, HNE exerted prominent cytotoxic effects in cultured HUVEC, manifested by morphological changes, diminished cellular viability, and impaired endothelial barrier function. Furthermore, HNE treatment induced apoptosis of HUVEC. These data provide evidence that HNE does not contribute to NF-kappaB-related mechanisms of the inflammatory response in HUVEC, but rather to endothelial dysfunction, cytotoxicity, and apoptotic cell death.  相似文献   

14.
Abstract: We investigated the effect of uncoupling astrocytic gap junctions on neuronal vulnerability to oxidative injury in embryonic rat hippocampal cell cultures. Mixed cultures (neurons growing on an astrocyte monolayer) treated with 18-α-glycyrrhetinic acid (GA), an uncoupler of gap junctions, showed markedly enhanced generation of intracellular peroxides (2,7-dichlorofluorescein fluorescence), impairment of mitochondrial function [(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction], and cell death (lactate dehydrogenase release) following exposure to oxidative insults (FeSO4 and 4-hydroxynonenal). GA alone had little or no effect on basal levels of peroxides, mitochondrial function, or neuronal survival. Intercellular dye transfer analyses revealed extensive astrocyte-astrocyte coupling but no astrocyte-neuron or neuron-neuron coupling in the mixed cultures. Studies of pure astrocyte cultures and microscope analyses of neurons in mixed cultures showed that the increased oxidative stress and cell death in GA-treated cultures occurred only in neurons and not in astrocytes. Antioxidants (propyl gallate and glutathione) blocked the death of neurons exposed to FeSO4/GA. Elevations of neuronal intracellular calcium levels ([Ca2+]i) induced by FeSO4 were enhanced in neurons in mixed cultures exposed to GA. Removal of extracellular Ca2+ and the L-type Ca2+ channel blocker nimodipine prevented impairment of mitochondrial function and cell death induced by FeSO4 and GA, whereas glutamate receptor antagonists were ineffective. Finally, GA exacerbated kainate- and FeSO4-induced injury to pyramidal neurons in organotypic hippocampal slice cultures. The data suggest that interastrocytic gap junctional communication decreases neuronal vulnerability to oxidative injury by a mechanism involving stabilization of cellular calcium homeostasis and dissipation of oxidative stress.  相似文献   

15.
Liver cells (HepG2 and primary hepatocytes) overexpressing CYP2E1 and exposed to arachidonic acid (AA) were previously shown to lose viability together with enhanced lipid peroxidation. These events were blocked in cells pre-incubated with antioxidants (alpha-tocopherol, glutathione ethyl ester), or in HepG2 cells not expressing CYP2E1. The goal of the current study was to evaluate the role of calcium and calcium-activated hydrolases in these CYP2E1-AA interactions. CYP2E1-expressing HepG2 cells treated with AA showed an early increase in cytosolic calcium and partial depletion of ionomycin-sensitive calcium stores. These changes in calcium were blocked by alpha-tocopherol. AA activated phospholipase A2 (PLA2) in CYP2E1-expressing liver cells, and this was inhibited by PLA2 inhibitors or alpha-tocopherol. PLA2 inhibitors prevented the cell death caused by AA, without affecting CYP2E1 activity or lipid peroxidation. AA toxicity and PLA2 activation were inhibited in calcium-depleted cells, but not by removal of extracellular calcium alone. Removal of extracellular calcium inhibited the early increase in cytosolic calcium caused by AA. CYP2E1 overexpressing HepG2 cells exposed to AA showed a decrease in mitochondrial membrane potential, which was prevented by the PLA2 inhibitors. These results suggest that AA-induced toxicity to CYPE1-expressing cells: (i) is associated with release of Ca2+ from intracellular stores that depends mainly on oxidative membrane damage; (ii) is associated with activation of PLA2 that depends on intracellular calcium and lipid peroxidation; (iii) does not depend on increased influx of extracellular calcium, and (iv) depends on the effect of converging events (lipid peroxidation, intracellular calcium, activation of PLA2) on mitochondria to induce bioenergetic failure and necrosis. These interactions may play a role in alcohol liver toxicity, which requires polyunsaturated fatty acids, and involves induction of CYP2E1.  相似文献   

16.
It has long been established that oxidative stress plays a critical role in the pathophysiology of spinal cord injury, and represents an important target of therapeutic intervention following the initial trauma. However, free radical scavengers have been largely ineffective in clinical trials, and as such a novel target to attenuate oxidative stress is highly warranted. In addition to free radicals, peroxidation of lipid membranes following spinal cord injury (SCI) produces reactive aldehydes such as acrolein. Acrolein is capable of depleting endogenous antioxidants such as glutathione, generating free radicals, promoting oxidative stress, and damaging proteins and DNA. Acrolein has a significantly longer half‐life than the transient free radicals, and thus may represent a potentially better target of therapeutic intervention to attenuate oxidative stress. There is growing evidence, from our lab and others, to suggest that reactive aldehydes such as acrolein play a critical role in oxidative stress and SCI. The focus of this review is to summarize the cellular and biochemical mechanisms of acrolein‐induced membrane damage, mitochondrial injury, oxidative stress, cell death, and functional loss. Evidence will also be presented to suggest that acrolein scavenging may be a novel means of therapeutic intervention to attenuate oxidative stress and improve recovery following traumatic SCI.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is an age-related, fatal motor neuron degenerative disease occurring both sporadically (sALS) and heritably (fALS), with inherited cases accounting for approximately 10% of diagnoses. Although multiple mechanisms likely contribute to the pathogenesis of motor neuron injury in ALS, recent advances suggest that oxidative stress may play a significant role in the amplification, and possibly the initiation, of the disease. Lipid peroxidation is one of the several outcomes of oxidative stress. Since the central nervous system (CNS) is enriched with polyunsaturated fatty acids, it is particularly vulnerable to membrane-associated oxidative stress. Peroxidation of cellular membrane lipids or circulating lipoprotein molecules generates highly reactive aldehydes, among which is 4-hydroxy-2-nonenal (HNE). HNE levels are increased in spinal cord motor neurons of ALS patients, indicating that lipid peroxidation is associated with the motor neuron degeneration in ALS. In the present study, we used a parallel proteomic approach to identify HNE-modified proteins in the spinal cord tissue of a model of fALS, G93A-SOD1 transgenic mice, in comparison to the nontransgenic mice. We found three significantly HNE-modified proteins in the spinal cord of G93A-SOD1 transgenic mice: dihydropyrimidinase-related protein 2 (DRP-2), heat-shock protein 70 (Hsp70), and possibly alpha-enolase. These results support the role of oxidative stress as a major mechanism in the pathogenesis of ALS. Structural alteration and activity decline of functional proteins may consistently contribute to the neurodegeneration process in ALS.  相似文献   

18.
N-Methyl-D-aspartate (NMDA) administration exacerbates neurological dysfunction after traumatic spinal cord injury in rats, whereas NMDA antagonists improve outcome in this model. These observations suggest that release of excitatory amino acids contributes to secondary tissue damage after traumatic spinal cord injury. To further examine this hypothesis, concentrations of free amino acids were measured in spinal cord samples from anesthetized rats subjected to various degrees of impact trauma to the T9 spinal segment. Levels of excitatory and inhibitory neurotransmitter amino acids [gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, taurine] and levels of nonneurotransmitter amino acids (asparagine, glutamine, alanine, threonine, serine) were determined at 5 min, 4 h, and 24 h posttrauma. Uninjured surgical (laminectomy) control animals showed modest but significant declines in aspartate and glutamate levels, but not in other amino acids, at all time points. In injured animals, the excitatory amino acids glutamate and aspartate were significantly decreased by 5 min posttrauma, and remained depressed at 4 h and 24 h as compared with corresponding laminectomy controls. In contrast, the inhibitory amino acids, glycine, GABA, and taurine, were decreased at 5 min postinjury, had partially recovered at 4 h, and were almost fully recovered at 24 h. The nonneurotransmitter amino acids were unchanged at 5 min posttrauma and significantly increased at 4 h, with partial recovery at 24 h. At 4 h postinjury, severe trauma caused significantly greater decreases in aspartate and glutamate than did either mild or moderate injury. These findings are consistent with the postulated role of excitatory amino acids in CNS trauma.  相似文献   

19.
The effect of magnesium (Mg)-deficient culture on endothelial cell susceptibility to oxidative stress was examined. Bovine endothelial cells were cultured in either control sufficient (0.8 mM) or deficient (0.4 mM) levels of MgCl2. Oxygen radicals were produced extracellularly by the addition of dihydroxyfumarate and Fe(3+)-ADP. Isolated Mg-deficient endothelial cells produced 2- to 3-fold higher levels of thiobarbituric acid (TBA)-reactive materials when incubated with this free radical system. Additional studies were performed using digitized video microscopy and 2',7'-dichlorofluorescein diacetate (DCFDA) as an intracellular indicator for oxidative events at the single cell level. In response to the exogenous oxidative stress, endothelial cells exhibited a time-dependent increase in fluorescence, suggestive of intracellular lipid peroxidation. The increase in cellular fluorescence began within 1 min of free radical addition; the Mg-deficient cells exhibited a more rapid increase in fluorescence than that of Mg-sufficient cells. In separate experiments, cellular viability was assessed using the Trypan blue exclusion assay. Mg deficiency increased cytotoxicity of the added oxyradicals, but the loss of cellular viability began to occur only after 15 min of free radical exposure, lagging behind the detection of intracellular oxidation products. These results suggest that increased oxidative endothelial cell injury may contribute to vascular injury during Mg deficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号