首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TWEAK, a member of the TNF family, induces cell death in some tumor cell lines, but also induces proliferation of endothelial cells and angiogenesis. Recently, fibroblast growth factor-inducible 14 (Fn14) has been identified to be a TWEAK receptor, which may be responsible for the proliferation of endothelial cells and angiogenesis. In this study, we investigated the pro-inflammatory effect of TWEAK on human umbilical vein endothelial cells (HUVEC). We demonstrated that TWEAK could not only induce the proliferation and migration but also upregulate the cell surface expression of adhesion molecules such as ICAM-1 and E-selectin, and induce the secretion of chemokines such as IL-8 and MCP-1 in HUVEC. Moreover, by using an anti-Fn14 mAb that blocks the TWEAK/Fn14 interaction, we demonstrated that Fn14 was constitutively expressed on HUVEC and totally mediated the biological effects of TWEAK on HUVEC. These results indicated that TWEAK could induce pro-inflammatory reactions via Fn14 on HUVEC.  相似文献   

2.
The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) in human malignant ovarian tumors, and test TWEAK’s potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC), we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%). Similarly, 35 out of 41 (85.37%) malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients’ clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α), whereas either TWEAK or TNF-α alone didn’t affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1) production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.  相似文献   

3.
Hepassocin (HPS) is a specific mitogenic active factor for hepatocytes, and inhibits growth by overexpression in hepatocellular carcinoma (HCC) cells. However, the mechanism of HPS regulation on growth of liver-derived cells still remains largely unknown. In this study, we found that HPS was expressed and secreted into the extracellular medium in cultured L02 human hepatic cells; conditional medium of L02 cells promoted proliferation of L02 cells and this activity could be blocked by anti-HPS antibody. Moreover, we identified the presence of receptor for HPS on L02 cells and HepG2 human hepatoma cells. Overproduction of truncated HPS, which signal peptide was deleted, significantly inhibited the proliferation of HCC cells and induced cell cycle arrest. These findings suggest that HPS promotes hepatic cell line L02 cells proliferation via an autocrine mechanism and inhibits HCC cells proliferation by an intracrine pathway.  相似文献   

4.
Vascular reorganization in wound healing is a complex process, which involves coagulation, endothelial cell proliferation and migration, basement membrane regeneration, and fibrinolysis. During this healing process, the hemostatic system and the angiogenic system are intimately interconnected. To elucidate the contribution of plasminogen in the process of wound healing, we have established a perfusion cell culture system. Using this novel cell culture system, we found that addition of plasminogen in the perfusion medium allowed the "scratch-wounded" endothelial cells to recover completely, while mini-plasminogen only affected the migration but not the proliferation of the endothelial cells. In the process of recovery with the addition of plasminogen, significant plasmin activity could only be detected when the growth of the endothelial cells have almost reached confluence. This finding indicates that wound healing is triggered and promoted during the absence of the proteolytic activity of plasmin. In addition, we could not detect any matrix metalloproteinase activity in the perfusion culture medium throughout the whole culture period. However, we did found that the circulating medium collected from the perfusion system at the early phase of the healing process has stimulatory activity on the growth of endothelial cells, but the proliferative activity decreased back to the basal level when the cells reached confluence. Thus, by using the perfusion cell culture system, we found that proliferation of endothelial cells is regulated by plasminogen and the wound healing process is controlled by a temporal interaction between the endothelial cells and plasminogen.  相似文献   

5.
Using a cell-free translation system, we previously demonstrated that the turnover and translation of amyloid precursor protein (APP) mRNA was regulated by a 29-nucleotide instability element, located 200 nucleotides downstream from the stop codon. Here we have examined the regulatory role of this element in primary human capillary endothelial cells under different nutritional conditions. Optimal proliferation required a growth medium (endothelial cell growth medium) supplemented with epidermal, basic fibroblast, insulin-like, and vascular endothelial growth factors. In vitro transcribed mRNAs with the 5'-untranslated region (UTR) and coding region of beta-globin and the entire 3'-UTR of APP 751 were transfected into cells cultured in endothelial cell growth medium. Wild-type globin-APP mRNA containing an intact APP 3'-UTR and mutant globin-APP mRNA containing a mutated 29-nucleotide element decayed with identical half-lives (t 1/2 = 60 min). Removal of all supplemental growth factors from the culture medium significantly accelerated the decay of transfected wild-type mRNA (t 1/2 = 10 min), but caused only a moderate decrease in the half-life of transfected mutant mRNA (t 1/2 = 40 min). We therefore conclude that the 29-nucleotide 3'-UTR element is an mRNA destabilizer whose function can be inhibited by inclusion of the aforementioned mixture of growth factors in the culture medium.  相似文献   

6.
7.
Ras homologous C (RhoC) is expressed in various cancers, including hepatocellular carcinoma (HCC). In this study, we first analyzed RhoC expression in 46 HCC tissue specimens and found that RhoC expression was significantly increased in HCC tissues compared to the adjacent normal liver tissues. Next, we investigated the role of RhoC in malignant transformation of normal hepatocytes. The HL7702 cell line was stably transfected with a RhoC expression vector and then subjected to cell proliferation, differentiation, colony formation, migration and invasion assays, as well as nude mouse xenograft assays. Gene expressions in these cells were determined using RT-PCR and Western blot. Overexpression of RhoC significantly promoted proliferation and anchorage-independent growth of HL7702 cells, but suppressed cell differentiation, as compared with the parental cells and the empty vector-transfected control cells. Moreover, RhoC overexpression induced migration and invasion of HL7702 cells in vitro. Molecularly, RhoC increased the expression of cell cycle-related genes, matrix metalloprotease 2 (MMP2), MMP9 and vascular endothelial growth factor (VEGF). In addition, RhoC-transfected cells formed tumors in nude mice, whereas vector-transfected HL7702 cells did not form any tumors in nude mice. This study demonstrated the role of RhoC overexpression in malignant transformation of normal human hepatocytes, suggesting that RhoC may function as an oncogene in hepatocytes.  相似文献   

8.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

9.
Summary The aim of this study was to test the versatility of a new basal cell culture medium, GTSF-2. In addition to traditional growth-factors, GTSF-2 contains a blend of three sugars (glucose, galactose, and fructose) at their physiological levels. For these studies, we isolated normal endothelial cells from human, bovine, and rat large blood vessels and microvessels. In addition, GTSF-2 was also tested as a replacement for high-glucose-containing medium for PC12 pheochromocytoma cells and for other, transformed cell lines. The cell growth characteristics were assessed with a novel cell viability and proliferation assay, which is based on the bioreduction of the fluorescent dye, Alamar Blue. After appropriate calibration, the Alamar Blue assay was found to be equivalent to established cell proliferation assays. Alamar Blue offers the advantage that cell proliferation can be measured in the same wells over an extended period of time. For some of the cell types (e.g., endothelial cells isolated from the bovine aorta, the rat adrenal medulla, or the transformed cells), proliferation in unmodified GTSF-2 was equivalent to that in the original culture media. For others cell types (e.g., human umbilical vein endothelial cells and PC12 cells), GTSF-2 proved to be a superior growth medium, when supplemented with simple additives, such as endothelial cell growth supplement (bFGF) or horse serum. Our results suggest that GTSF-2 is a versatile basal medium that will be useful for studying organ-specific differentiation in heterotypic coculture studies.  相似文献   

10.

Background

TWEAK (Tumor necrosis factor like WEAK inducer of apoptosis) is highly expressed by different immune cells and triggers multiple cellular responses, including control of angiogenesis. Our objective was to investigate its role in the human endometrium during the implantation window, using an ex-vivo endometrial microhistoculture model. Indeed, previous results suggested that basic TWEAK expression influences the IL-18 related uNK recruitment and local cytotoxicity.

Methodology/Principal Findings

Endometrial biopsies were performed 7 to 9 days after the ovulation surge of women in monitored natural cycles. Biopsies were cut in micro-pieces and cultured on collagen sponge with appropriate medium. Morphology, functionality and cell death were analysed at different time of the culture. We used this ex vivo model to study mRNA expressions of NKp46 (a uNK cytotoxic receptor) and TGF-beta1 (protein which regulates uNK cytokine production) after adjunction of excess of recombinant IL-18 and either recombinant TWEAK or its antibody. NKp46 protein expression was also detailed by immunohistochemistry in selected patients with high basic mRNA level of IL-18 and either low or high mRNA level of TWEAK. The NKp46 immunostaining was stronger in patients with an IL-18 over-expression and a low TWEAK expression, when compared with patients with both IL-18 and TWEAK high expressions. We did not observe any difference for TWEAK expression when recombinant protein IL-18 or its antibody was added, or conversely, for IL-18 expression when TWEAK or its antibody was added in the culture medium. In a pro-inflammatory environment (obtained by an excess of IL-18), inhibition of TWEAK was able to increase significantly NKp46 and TGF-beta1 mRNA expressions.

Conclusions/Significance

TWEAK doesn''t act on IL-18 expression but seems to control IL-18 related cytotoxicity on uNK cells when IL-18 is over-expressed. Thus, TWEAK appears as a crucial physiological modulator to prevent endometrial uNK cytotoxicity in human.  相似文献   

11.
It has been shown that bridging integrator 1 (BIN1) can interact with c-myelocytomatosis (c-Myc) oncoprotein in cancer. However, the role of BIN1 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the expression and prognostic role of BIN1 in primary HCC and evaluated the function of BIN1 in hepatocarcinogenesis. Using real-time polymerase chain reaction and Western blot analysis, we found significantly decreased expression of BIN1 in primary HCC tumor tissues (n = 42) compared with adjacent normal tissues and in HCC cell lines. Immunohistochemistry analysis also found decreased BIN1 expression in HCC tumor tissues (n = 117). In clinicopathological analysis, loss of BIN1 expression correlated significantly (P < 0.05) with differentiation scores and tumor size. Importantly, decreased expression of BIN1 in tumors was found to be closely associated with a poor prognosis, and we conclude that BIN1 was an independent prognostic factor in a multivariate analysis. In mechanistic studies, restoring BIN1 expression in BIN1-null HCC cells significantly inhibited cell proliferation and colony formation and induced apoptosis of HCC cells. Furthermore, we found that BIN1 overexpression could significantly suppress the motility and invasion of HCC cells in vitro. Our results indicate that BIN1 may function as a potential tumor suppressor and serve as a novel prognostic marker in HCC patients. The BIN1 molecule might play an important role in tumor growth, cell motility and invasion. Modulation of BIN1 expression may lead to clinical applications of this critical molecule in the control of hepatocellular carcinoma as well as in early and effective diagnosis of this aggressive tumor.  相似文献   

12.
13.
目的:探讨GPC3(glypican 3)在肝癌细胞糖酵解中的调控作用。方法:采用si RNA(small interfering RNA)干扰肝癌细胞中GPC3的表达后,采用q PCR(quantitative PCR)与Western blot实验检测肿瘤糖酵解关键调控分子Glut1(glucose transporter-1)、HK2(hexokinase 2)与LDH-A(Lactate Dehydrogenase A)的表达,通过检测培养液中葡萄糖的减少量分析GPC3对细胞葡萄糖摄取情况,通过检测培养液中乳酸含量与PH值分析GPC3对细胞乳酸产生的影响,通过检测细胞的氧耗速率,分析GPC3对线粒体氧化磷酸化功能的影响。结果:干扰肝癌细胞中GPC3的表达可抑制糖酵解关键调控分子Glut1、HK2与LDH-A表达,降低肝癌细胞葡萄糖摄取速率和细胞氧耗速率,且细胞培养液PH升高,乳酸产生减少。结论:肝癌细胞中GPC3高表达通过上调糖酵解关键调控分子Glut1、HK2与LDH-A表达而促进肝癌细胞糖酵解效应,同时抑制线粒体氧化磷酸化活性。这些结果进一步提示糖代谢重编程可能是GPC3促进肝癌增殖与转移的重要机制。  相似文献   

14.
Recently improved culture conditions for human adult arterial endothelial and smooth muscle cells from a wide variety of donors have been used to study the effects of lipoproteins on proliferation of both cell types in low serum culture medium. Optimal growth of endothelial and smooth muscle cells in an optimal nutrient medium (MCDB 107) containing epidermal growth factor, a partially purified fraction from bovine brain, and 1% (v/v) lipoprotein-deficient serum was dependent on either high- or low-density lipoprotein. High- and low-density lipoprotein stimulated cell growth by three- and five-fold, respectively, over a 6-day period. Optimal stimulation of both endothelial and smooth muscle cell growth occurred between 20 and 60 micrograms/ml of high- and low-density lipoproteins, respectively. No correlation between the activation of 3-hydroxyl-3-methylglutaryl coenzyme. A reductase activity and lipoprotein-stimulated cell proliferation was observed. Lipid-free total apolipoproteins or apolipoprotein C peptides from high-density lipoprotein were partially effective and together with oleic acid effectively replaced native high-density lipoprotein for the support of endothelial cell growth. In contrast, apolipoproteins or apolipoprotein C peptides from high-density lipoprotein alone or with oleic acid had no effect on smooth muscle cell proliferation. The results suggest a functional role of high- and low-density lipoproteins and apolipoproteins in the proliferation of human adult endothelial and smooth muscle cells.  相似文献   

15.
TNF-like weak inducer of apoptosis, or TWEAK, is a relatively new member of the TNF-ligand superfamily. Ligation of the TWEAK receptor Fn14 by TWEAK has proinflammatory effects on fibroblasts, synoviocytes, and endothelial cells. Several of the TWEAK-inducible cytokines are important in the pathogenesis of kidney diseases; however, whether TWEAK can induce a proinflammatory effect on kidney cells is not known. We found that murine mesangial cells express cell surface TWEAK receptor. TWEAK stimulation of mesangial cells led to a dose-dependent increase in CCL2/MCP-1, CCL5/RANTES, CXCL10/IFN-gamma-induced protein 10 kDa, and CXCL1/KC. The induced levels of chemokines were comparable to those found following mesangial cell exposure to potent proinflammatory stimuli such as TNF-alpha + IL-1beta. CXCL11/interferon-inducible T cell alpha chemoattractant, CXCR5, mucosal addressin cell adhesion molecule-1, and VCAM-1 were up-regulated by TWEAK as well. TWEAK stimulation of mesangial cells resulted in an increase in phosphorylated Ikappa-B, while pretreatment with an Ikappa-B phosphorylation inhibitor significantly blocked chemokine induction, implicating activation of the NF-kappaB signaling pathway in TWEAK-induced chemokine secretion. Importantly, the Fn14-mediated proinflammatory effects of TWEAK on kidney cells were confirmed using mesangial cells derived from Fn14-deficient mice and by injection in vivo of TWEAK into wild-type vs Fn14-deficient mice. Finally, TWEAK-induced chemokine secretion was prevented by treatment with novel murine anti-TWEAK Abs. We conclude that TWEAK induces mesangial cells to secrete proinflammatory chemokines, suggesting a prominent role for TWEAK in the pathogenesis of renal injury. Our results support Ab inhibition of TWEAK as a potential new approach for the treatment of chemokine-dependent inflammatory kidney diseases.  相似文献   

16.
Summary Ladsin is a laminin-like cell-adhesive scatter factor with potent cell motility-stimulating ability and was purified from serum-free conditioned medium of a malignant human gastric adenocarcinoma cell line STKM-1. To test its possible role in tumor angiogenesis, we investigated its effect on primary culture of endothelial cells (human umbilical vein endothelial cells) and endothelial cell line ECV304 in this study. Cell adhesion and motility effects of ladsin were observed in both types of endothelial cells. In cell-attachment assay, ladsin interacted with integrin α3β1 that was expressed on the endothelial cell surface. In Boyden chambers, ladsin stimulated both directed and random migration of ECV304 cells. Ladsin induced repair of artificial wounds generated in ECV304 cell monolayers by stimulating cell migration. Ladsin did not affect the growth rate of ECV304 cells at a low cell density but significantly increased the saturation cell density. These results suggest that ladsin may be involved in the adhesion and migration of endothelial cells under some physiological and pathological conditions.  相似文献   

17.
Summary The purpose of this study is to identify optimal culture conditions to support the proliferation of human macrovascular endothelial cells. Two cell lines were employed: human saphenous vein endothelial cells (HSVEC) and human umbilical vein endothelial cells (HUVEC). The influence of basal nutrient media (14 types), fetal bovine serum (FBS), and mitogens (three types) were investigated in relation to cell proliferation. Additionally, a variety of extracellular matrix (ECM) substrate-coated culture dishes were also tested. The most effective nutrient medium in augmenting cell proliferation was MCDB 131. Compared to the more commonly used M199 medium, MCDB 131 resulted in a 2.3-fold increase in cell proliferation. Media containing 20% FBS increased cell proliferation 7.5-fold compared to serum-free media. Among the mitogens tested, heparin (50 μg/ml) and endothelial cell growth supplement (ECGS) (50μg/ml) significantly improved cell proliferation. Epithelial growth factor (EGF) provided no improvement in cell proliferation. There were no statistical differences in cell proliferation or morphology when endothelial cells were grown on uncoated culture plates compared to plates coated with ECM proteins: fibronectin, laminin, gelatin, or collagen types I and IV. The culture environment yielding maximal HSVEC and HUVEC proliferation is MCDB 131 nutrient medium supplemented with 2 mM glutamine, 20% FBS, 50 μg/ml heparin, and 50 μg/ml ECGS. The ECM substrate-coated culture dishes offer no advantage.  相似文献   

18.
The control of endothelial cell proliferation is important in a variety of processes including wound healing and tumor-induced angiogenesis. We have observed that normal unstimulated human monocytes isolated from the blood can inhibit human endothelial cell proliferation. Monocyte-conditioned medium was fractionated by gel filtration chromatography, yielding a 175-fold enrichment of a growth inhibitory activity, designated monocyte-derived endothelial cell inhibitory factor (MECIF). MECIF was found to be protease sensitive, resistant to acid treatment, and heat labile. When conditioned medium was subjected to HPLC gel filtration, the inhibitory activity was eluted as a single peak with a molecular weight of 50-70 kDa. Several characteristics distinguish MECIF from previously described monocyte/macrophage-derived inhibitory factors. Unlike TGF-beta, MECIF is heat labile and does not induce a mitogenic response in growth-arrested normal rat kidney cells. In addition, polyclonal antibodies specific for TGF-beta or INF-gamma do not inhibit MECIF activity. MECIF preparations show low levels of TNF-alpha, insufficient to promote the observed growth inhibitory effect. MECIF activity on human endothelial cells was found to be dose dependent and reversible. MECIF also appeared to be target cell selective in that it did not significantly alter the growth of human smooth muscle cells or skin fibroblasts. These data suggest that monocyte-derived factors may play a key role in inhibiting endothelial cell proliferation.  相似文献   

19.
Heat shock protein (HSP) 20, one of the low‐molecular weight HSPs, is known to have versatile functions, such as vasorelaxation. However, its precise role in cancer proliferation remains to be elucidated. While HSP20 is constitutively expressed in various tissues including the liver, we have previously reported that HSP20 protein levels in human hepatocellular carcinoma (HCC) cells inversely correlate with the progression of HCC. In this study, we investigated the role of HSP20 in HCC proliferation. The activities of extracellular signal‐regulated kinase (ERK), c‐jun N‐terminal kinase (JNK), and AKT were negatively correlated with the HSP20 protein levels in human HCC tissues. Since HSP20 proteins were hardly detected in HCC‐derived cell lines, the effects of HSP20 expression were evaluated using human HCC‐derived HuH7 cells that were stably transfected with wild‐type human HSP20 (HSP20 overexpressing cells). In HSP20 overexpressing cells, cell proliferation was retarded, and the activation of the mitogen‐activated protein kinases (MAPKs) signaling pathways, including the ERK and JNK, and AKT pathways, as well as cyclin D1 accumulation induced by either transforming growth factor‐α (TGFα) or hepatocyte growth factor, were significantly suppressed compared with the empty vector‐transfected cells (control cells). Taken together, our findings strongly suggest that HSP20 suppresses the growth of HCC cells via the MAPKs and AKT signaling pathways, thus suggesting that the HSP20 could be a new therapeutic target for HCC. J. Cell. Biochem. 112: 3430–3439, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
microRNA-199a (miR-199a) is a highly conserved miRNA, always deregulated in numerous human tumors. The results of microarray analysis indicated that miR-199a was frequently downregulated in hepatocellular carcinoma (HCC). The expression levels of miR-199a in 11 pairs of matched HCC neoplastic and adjacent non-neoplastic tissues, 5 HCC cell lines and liver cell line L02 were examined by quantitative real-time PCR analysis. We found miR-199a was significantly down-regulated in HCC tissues when compared with pair-matched adjacent non-tumor tissues. We also found the expression level of miR-199a was also substantially decreased in several human HCC cell lines including SMMC-7721, BEL-7402, BEL-7701, MHCC97H, and HepG2. To investigate the role of miR-199a in tumorigenesis, we developed a lentiviral vector for the expression of pre-miR-199a (Lenti-miR-199a). Lenti-miR-199a inhibited HCC cell proliferation in vitro and in vivo. Compared to parental cells or cells transfected with a control vector, the overexpression of microRNA-199a in the HCC cell lines HepG2 stably was showed to reduce cell proliferation in vitro and in vivo. Luciferase reporter assay revealed the regulation of miR-199a on 3’-UTR of HIF-1α. Further investigation confirmed that miR-199a significantly reduced the endogenous protein level of HIF-1α in hypoxia. MiR-199a inhibits cell proliferation in vitro and in vivo partly through down-regulation of HIF-1α in human HCC. Thus, these studies provide an important new insight into the pathogenesis of human HCC and it may open a new perspective for the development of effective gene therapy for human HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号