首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mature SV40 DNA synthesized for different periods of time either in isolated nuclei or in intact cells was highly purified and then digested with restriction endonucleases in order to relate the time of synthesis of newly replicated viral DNA to its location in the genome. Replication in nuclei supplemented with a cytosol fraction from uninfected cells was a faithful continuation of the bidirectional process observed in intact cells, but did not exhibit significant initiation of new replicons. SV40 DNA replication in cells at 37 degrees C proceeded at about 145 nucleotides/min per replication fork. In the absence of cytosol, when DNA synthesis was limited and joining of Okazaki fragments was retarded, bidirectional SV40 DNA replication continued into the normal region where separation yeilded circular duplex DNA molecules containing one or more interruptions in the nascent DNA strands. In the presence of cytosol, this type of viral DNA was shown to be a precursor of covalently closed, superhelical SV40 DNA, the mature from of viral DNA.  相似文献   

2.
Nuclei from polyoma-infected 3T6 fibroblasts elongate in vitro the progeny strands of the replicative intermediates of polyoma DNA. When high concentrations of such nuclei were incubated, short DNA fragments were formed and subsequently added onto growing progeny strands. When nuclei were repeatedly washed with buffer containing detergent and then incubated at low concentrations. DNA synthesis was decreased. In particular, the joining process was reduced, resulting in an accumulation of short DNA fragments. All aspects of the synthetic capacity of the nuclei were restored by addition of cytoplasmic extract. Additions of purified enzymes (polynucleotide ligase from calf thymus or Escherichia coli together with E. coli DNA polymerase I) increased the joining function of the nuclei. The system can be used for the identification of the enzymatic steps concerned with polyoma DNA replication.  相似文献   

3.
About 50% of the SV40 DNA in the process of replication (sv40(ri) dna) completed replication in lysates of infected BSC-1 cells by conversion to covalently closed, superhelical SV40 DNA (SV40(I) DNA). Fractionation of the lysate into nuclear and cytoplasmic components blocked 99% of the synthesis of SV40(I) DNA in the purified nuclei. The reconstituted system, made by adding back the cytoplasmic fraction before incubation at 30 degrees, completely restored the in vitro level of SV40(I) DNA synthesis. Preliminary characterization of the activity found in the cytoplasmic fraction suggested it was a soluble, heat-labile protein (or proteins) with a minimum molecular weight of about 30,000 and an active sulfhydryl group. The activity was present in both infected and uninfected monkey cells, and at a lower level in mouse, hamster, and human cell lines. Neither serum starvation nor cycloheximide treatment of cells diminished the activity in the cytoplasmic fraction. Purified cytoplasmic DNA polymerase from KB cells did not substitute for the cytoplasmic fraction which was required for elongation of newly synthesized DNA strands. In the absence of the cytoplasmic fraction, conversion of 4 S DNA into longer strands was inhibited, and SV40(RI) DNA appeared to be broken specifically at the replication forks.  相似文献   

4.
5.
The maturation of replicating simian virus 40 (SV40) chromosomes into superhelical viral DNA monomers [SV40(I) DNA] was analyzed in both intact cells and isolated nuclei to investigate further the role of soluble cytosol factors in subcellular systems. Replicating intermediates [SV40(RI) DNA] were purified to avoid contamination by molecules broken at their replication forks, and the distribution of SV40(RI) DNA as a function of its extent of replication was analyzed by gel electrophoresis and electron microscopy. With virus-infected CV-1 cells, SV40(RI) DNA accumulated only when replication was 85 to 95% completed. These molecules [SV40(RI*) DNA] were two to three times more prevalent than an equivalent sample of early replicating DNA, consistent with a rate-limiting step in the separation of sibling chromosomes. Nuclei isolated from infected cells permitted normal maturation of SV40(RI) DNA into SV40(I) DNA when the preparation was supplemented with cytosol. However, in the absence of cytosol, the extent of DNA synthesis was diminished three- to fivefold (regardless of the addition of ribonucleotide triphosphates), with little change in the rate of synthesis during the first minute; also, the joining of Okazaki fragments to long nascent DNA was inhibited, and SV40(I) DNA was not formed. The fraction of short-nascent DNA chains that may have resulted from dUTP incorporation was insignificant in nuclei with or without cytosol. Pulse-chase experiments revealed that joining, but not initiation, of Okazaki fragments required cytosol. Cessation of DNA synthesis in nuclei without cytosol could be explained by an increased probability for cleavage of replication forks. These broken molecules masqueraded during gel electrophoresis of replicating DNA as a peak of 80% completed SV40(RI) DNA. Failure to convert SV40(RI*) DNA into SV40(I) DNA under these conditions could be explained by the requirement for cytosol to complete the gap-filling step in Okazaki fragment metabolism: circular monomers with their nascent DNA strands interrupted in the termination region [SV40(II*) DNA] accumulated with unjoined Okazaki fragments. Thus, separation of sibling chromosomes still occurred, but gaps remained in the terminal portions of their daughter DNA strands. These and other data support a central role for SV40(RI*) and SV40(II*) DNAs in the completion of viral DNA replication.  相似文献   

6.
M Kann  A Bischof    W H Gerlich 《Journal of virology》1997,71(2):1310-1316
Hepadnaviruses contain a DNA genome, but they replicate via an RNA intermediate, synthesized by the cellular RNA polymerase II in the nucleus of the infected cell. Thus, nuclear transport of the viral DNA is required in the viral life cycle. Protein-free DNA is only poorly imported into the nucleus, so one or more of the viral proteins must be involved in the transport of the viral genome. In order to identify these viral proteins, we purified woodchuck hepadnavirus (WHV) core particles from infected woodchuck liver, isolated WHV DNA, and extracted the covalent complex of viral polymerase from the particles using urea. Intact core particles, the polymerase-DNA complex, or protein-free WHV DNA from core particles was added to digitonin-permeabilized HuH-7 cells, in which the cytosol was substituted by rabbit reticulocyte lysate (RRL) and an ATP-generating system. The distribution of the viral genome was analyzed by semiquantitative PCR or by hybridization in total nuclei, RRL, nuclear membranes, and nucleoplasm. The polymerase-DNA complex was efficiently transported into the nucleus, as indicated by the resistance of the nucleus-associated DNA to a short-term treatment with DNase I of the intact nuclei. The DNA within core particles stayed mainly in the cytosol and remained protected against DNase I. A minor part of the encapsidated DNA was bound to nuclei. It was protected against DNase I but became accessible after disruption of the nuclei. Deproteinized viral DNA completely remained in the cytosol. These data show that the viral polymerase is probably sufficient for mediating the transport of a hepadnavirus genome into the nucleus and that the viral core particles may release the genome at the nuclear membrane.  相似文献   

7.
Nucleoprotein complexes containing both form 1 and replicative intermediates of polyoma DNA prepared from nuclei of virus-infected mouse fibroblasts retain a limited ability to elongate progeny strands of the replicative intermediates. Compared to isolated nuclei, both the rate and the extent of strand elongation is greatly decreased. The isolated complexes synthesize initiator RNA and start new Okazaki fragments, but are deficient in the joining of these fragments. Addition of small amounts of an extract from 16 hours old Drosophila embryos corrects the deficiencies. The stimulatory activity of the extract can be partially purified and has been separated into two fractions by chromatography on Sepharose 6B. With immunological techniques we demonstrate that the mouse DNA polymerase-α, tightly bound to the complexes, is responsible for DNA strand elongation.The Drosophila α-polymerase present in one of the two fractions purified on Sepharose 6B cannot substitute for the mouse enzyme. The stimulatory activity of the Drosophila fractions is thus not due to α-polymerase.  相似文献   

8.
Growing subcloned CV1-cells were infected with simian virus 40, and the time course of virus formation was determined. When infected cells were fractionated into cytoplasmic and nuclear fractions, most of the progeny virus particles were recovered in the cytoplasmic extract and not in the nuclei. This result was independent of the technique used for the preparation of nuclei and of the time after infection at which the extracts were prepared. Leakage of the virions from the nucleus occurred during the course of cell fractionation, suggesting that the nuclear membrane of the infected cells is damaged. Virions were found to accumulate in a nonlinear fashion, at the time when the number of viral deoxyribonucleic acid (DNA) molecules increases linearly with time after infection. This suggests that the size of the intracellular pool of capsid proteins increases constantly during the late phase of virus replication. Progeny viral DNA to become encapsidated is withdrawn at random from the pool of replicated DNA molecules.  相似文献   

9.
10.
Circularization of human immunodeficiency virus type 1 DNA in vitro.   总被引:15,自引:12,他引:3       下载免费PDF全文
Linear viral DNA present in cytoplasmic extracts of cells newly infected with human immunodeficiency virus type 1 can be induced to form 1-LTR and 2-LTR circles by incubation of the extracts in the presence of added nucleoside triphosphates. No circular DNA forms are detected when extracts are incubated in the absence of added nucleoside triphosphates. Restriction enzyme analysis and polymerase chain reaction analysis with selected primers, as well as DNA sequence analysis of the polymerase chain reaction products, show that most of the 2-LTR circles are the result of autointegration reactions, while 1-LTR circles result from recombination between the long terminal repeats on the linear viral DNA. In addition, a small amount of simple 2-LTR circles, formed by end-to-end joining of the linear viral DNA, is formed in vitro. Integration of the linear viral DNA into heterologous DNA competes effectively with the formation of 2-LTR circles by autointegration. However, concentrations of target DNA which completely block autointegration have no effect on the formation of 1-LTR circles or simple 2-LTR circles. Factors present in extracts of uninfected cells can mediate the formation of 1-LTR circles and simple 2-LTR circles from purified deproteinated linear viral DNA, indicating that viral proteins are not necessary for the formation of these two types of circular viral DNA. These experiments demonstrate that all the transformations of linear viral DNA which occur in the nuclei of cells infected with human immunodeficiency virus type 1 can be reproduced in vitro.  相似文献   

11.
Replicating polyoma virus DNA, pulse-labeled with 3H-thymidine, was isolated from infected mouse embryo cells by velocity sedimentation in neutral sucrose and purified by benzoylated-naphthoylated DEAE-cellulose chromatography. Nascent strands, prepared by heat denaturation of purified replicative intermediate, banded at a slightly higher buoyant density in neutral cesium sulfate gradients than single strands derived from superhelical viral DNA. Treatment of nascent strands with a mixture of ribonucleases 1A and T1 shifted their buoyant density to that of single strands derived from superhelical viral DNA. These results indicate that an oligoribonucleotide component is covalently associated with replicating polyoma DNA strands.  相似文献   

12.
During entry, herpes simplex virus type 1 (HSV-1) releases its capsid and the tegument proteins into the cytosol of a host cell by fusing with the plasma membrane. The capsid is then transported to the nucleus, where it docks at the nuclear pore complexes (NPCs), and the viral genome is rapidly released into the nucleoplasm. In this study, capsid association with NPCs and uncoating of the viral DNA were reconstituted in vitro. Isolated capsids prepared from virus were incubated with cytosol and purified nuclei. They were found to bind to the nuclear pores. Binding could be inhibited by pretreating the nuclei with wheat germ agglutinin, anti-NPC antibodies, or antibodies against importin beta. Furthermore, in the absence of cytosol, purified importin beta was both sufficient and necessary to support efficient capsid binding to nuclei. Up to 60 to 70% of capsids interacting with rat liver nuclei in vitro released their DNA if cytosol and metabolic energy were supplied. Interaction of the capsid with the nuclear pore thus seemed to trigger the release of the viral genome, implying that components of the NPC play an active role in the nuclear events during HSV-1 entry into host cells.  相似文献   

13.
The time course of covalent binding of polyoma viral DNA to mouse DNA was followed in mouse embryo cells that had been grown prior to infection in the presence of 5-bromodeoxyuridine. Density-labeled (HL) mouse DNA was separated from free polyoma DNA by CsCl isopycnic centrifugation. Polyoma DNA sequences present in HL mouse DNA were detected by hybridization with radioactive cRNA synthesized in vitro. In reconstruction experiments, the limit of detection was found to be, on the average, about 0.5 genome equivalent (g.e.) of polyoma DNA per cell. To find conditions for the isolation of HL mouse DNA and for its complete separation from free polyoma DNA, cultures infected at 4 degrees C were used. HL mouse DNA extracted with sodium dodecyl sulfate and high salt concentrations (5 to 6 M CsCl) and then purified by three consecutive CsCl density gradient centrifugations was free from detectable amounts of polyoma DNA, whereas HL mouse DNA extracted with chloroform and phenol and purified in the same way always contained contaminating, noncovalently bound polyoma DNA. In lytically infected bromodeoxyuridine-prelabeled mouse embryo cultures, polyoma DNA bound to HL mouse DNA that had been extracted by the sodium dodecyl sulfate-CsCl procedure was first detected in small amounts (1 to 2 g.e. per cell) at 10 h after infection. In cultures incubated with medium containing thymidine (5 mug/ml), 4 to 6 g.e. of polyoma DNA per cell was detected at 14 and 18 h after infection. In these samples, practically all viral DNA was bound to high-molecular-weight HL mouse DNA. In cultures incubated with normal medium (no additions) and extracted between 17 and 20 h after infection, 20 to 350 g.e. of polyoma DNA per cell banded with HL mouse DNA. However, when DNA of one of these samples was subfractionated by sodium dodecyl sulfate-salt precipitation prior to isolation of HL mouse DNA, about 80% of the viral DNA banding at increased density was present in the low-molecular-weight DNA fraction. This observation suggests that in normal medium some progeny viral DNA of increased density was synthesized. Covalent binding of polyoma DNA to density-labeled mouse DNA was demonstrated by alkaline CsCl density gradient centrifugation: nearly equal amounts of polyoma DNA were found in the H and L strands, respectively, as is expected for linear integration of viral DNA. The results lead to the conclusions that (i) early polyoma mRNA is transcribed from free parental viral DNA; (ii) covalent linear integration is first detectable at the time when tumor (T)-antigen is synthesized; and (iii) only few copies (<10 g.e./cell) become integrated between 10 and 18 h after infection, i.e., during the period when cellular and viral DNA replication starts in individual cells.  相似文献   

14.
15.
16.
Studies on Vaccinia Virus-Directed Deoxyribonucleic Acid Polymerase   总被引:1,自引:9,他引:1       下载免费PDF全文
A vaccinia-directed deoxyribonucleic acid (DNA) polymerase has been partially purified from the cytoplasmic fractions of virus-infected HeLa cells. The utilization of natural and synthetic templates by this enzyme resembles that of the host cell DNA-dependent DNA polymerases. The vaccinia DNA polymerase cannot copy ribopolymers or ribonucleic acid but is very effective with an "activated" DNA as template. An exonuclease preferring single-stranded DNA as substrate is found in the most highly purified preparations of the enzyme. The molecular weight of the vaccinia DNA polymerase seems to be about 110,000. The viral DNA polymerase is also found to be associated with purified, infected cell nuclei, and this association may be due, at least in part, to nonspecific adsorption of the vaccinia DNA polymerase by nuclei.  相似文献   

17.
Heterozygous replicative form molecules of bacteriophage X174 deoxyribonucleic acid (DNA) have been constructed in vitro. These are composed of viral strands extracted from purified preparations of phage bearing ts mutations and complementary strands of either half length or full length synthesized with purified DNA polymerase, in vitro, on DNA from am3 phage. In infections with such heterozygous DNA, involving mutations in each of four different cistrons, phage with the genotype of the complementary strand comprised 1 to 20% of the total phage produced by a spheroplast population. From single-burst analysis of the progeny from DNA heterozygous in one cistron (B), it appears that those phage with the genotype of the complementary strand arise as major components in a small proportion of the infected cells rather than comprising a minor component in most cells. The implications of such a pattern of expression are discussed with respect to mechanisms of phage DNA synthesis.  相似文献   

18.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

19.
Three subnuclear systems capable of continuing many aspects of simian virus 40 (SV40) DNA replication were characterized in an effort to define the minimum requirements for "normal" DNA replication in vitro. Nuclear extracts, prepared by incubating nuclei isolated from SV40-infected CV-1 cells in a hypotonic buffer to release both SV40 replicating and mature chromosomes, were either centrifuged to separate the total SV40 nucleoprotein complexes from the soluble nucleosol or fractionated on sucrose gradients to provide purified SV40 replicating chromosomes. With nuclear extracts, CV-1 cell cytosol stimulated total DNA synthesis, elongation of nascent DNA chains, maturation and joining of "Okazaki pieces," and the conversion of replicating viral DNA into covalently closed, superhelical DNA. Nucleoprotein complexes responded similarly, but frequently the response was reduced by 10 to 30%. In contrast, isolated replicating chromosomes in the presence of cytosol appeared only to complete and join Okazaki pieces already present on the template; without cytosol, Okazaki pieces incorporated alpha-(32)P-labeled deoxynucleoside triphosphates but failed to join. Consequently, replicating chromosomes failed to extensively continue nascent DNA chain growth, and the conversion of viral replicating DNA into mature DNA was seven to eight times less than that observed in nuclear extracts. Addition of neither cytosol nor nucleosol corrected this problem. In the presence of cytosol, nonspecific endonuclease activity was not a problem in any of the three in vitro systems. Extensive purification of replicating chromosomes was limited by three as yet irreversible phenomena. First, replicating chromosomes isolated in a low-ionic-strength medium had a limited capability to continue DNA synthesis. Second, diluting either nuclear extracts or replicating chromosomes before incubation in vitro stimulated total DNA synthesis but was accompanied by the simultaneous appearance of small-molecular-weight nascent DNA not associated with intact viral DNA templates and a decrease in the synthesis of covalently closed viral DNA. Although this second phenomenon appeared similar to the first, template concentration alone could not account for the failure of purified replicating chromosomes to yield covalently closed DNA. Finally, preparation of nucleoprotein complexes in increasing concentrations of NaCl progressively decreased their ability to continue DNA replication. Exposure to 0.3 M NaCl removed one or more factors required for DNA synthesis which could be replaced by addition of cytosol. However, higher NaCl concentrations yielded nucleoprotein complexes that had relatively no endogenous DNA synthesis activity and that no longer responded to cytosol. These data demonstrate that continuation of endogenous DNA replication in vitro requires both the soluble cytosol fraction and a complex nucleoprotein template whose ability to continue DNA synthesis depends on its concentration and ionic environment during its preparation.  相似文献   

20.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号