首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Phenocopies induced with antisense RNA identify the wingless gene   总被引:18,自引:0,他引:18  
  相似文献   

3.
Wang W  Cronmiller C  Brautigan DL 《Genetics》2008,179(4):1823-1833
Protein phosphatase-1 (PP1) is a major Ser/Thr phosphatase conserved among all eukaryotes, present as the essential GLC7 gene in yeast. Inhibitor-2 (I-2) is an ancient PP1 regulator, named GLC8 in yeast, but its in vivo function is unknown. Unlike mammals with multiple I-2 genes, in Drosophila there is a single I-2 gene, and here we describe its maternally derived expression and required function during embryogenesis. During oogenesis, germline expression of I-2 results in the accumulation of RNA and abundant protein in unfertilized eggs; in embryos, the endogenous I-2 protein concentrates around condensed chromosomes during mitosis and also surrounds interphase nuclei. An I-2 loss-of-function genotype is associated with a maternal-effect phenotype that results in drastically reduced progeny viability, as measured by reduced embryonic hatch rates and larval lethality. Embryos derived from I-2 mutant mothers show faulty chromosome segregation and loss of mitotic synchrony in cleavage-stage embryos, patchy loss of nuclei in syncytial blastoderms, and cuticular pattern defects in late-stage embryos. Transgenic expression of wild-type I-2 in mutant mothers gives dose-dependent rescue of the maternal effect on embryo hatch rate. We propose that I-2 is required for proper chromosome segregation during Drosophila embryogenesis through the coordinated regulation of PP1 and Aurora B.  相似文献   

4.
5.
In vertebrates, wnt8 has been implicated in the early patterning of the mesoderm. To determine directly the embryonic requirements for wnt8, we generated a chromosomal deficiency in zebrafish that removes the bicistronic wnt8 locus. We report that homozygous mutants exhibit pronounced defects in dorso-ventral mesoderm patterning and in the antero-posterior neural pattern. Despite differences in their signaling activities, either coding region of the bicistronic RNA can rescue the deficiency phenotype. Specific interference of wnt8 translation by morpholino antisense oligomers phenocopies the deficiency, and interference with wnt8 translation in ntl and spt mutants produces embryos lacking trunk and tail. These data demonstrate that the zebrafish wnt8 locus is required during gastrulation to pattern both the mesoderm and the neural ectoderm properly.  相似文献   

6.
7.
Shippy TD  Guo J  Brown SJ  Beeman RW  Denell RE 《Genetics》2000,155(2):721-731
The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.  相似文献   

8.
9.
Nanos is the localized posterior determinant in Drosophila   总被引:22,自引:0,他引:22  
C Wang  R Lehmann 《Cell》1991,66(4):637-647
Segmental pattern in the Drosophila embryo is established by two maternal factors localized to the anterior and posterior poles of the egg cell. Here we provide molecular evidence that the localized posterior factor is the RNA of the nanos (nos) gene. nos RNA is localized to the posterior pole of early embryos, and nos protein acts at a distance to direct abdomen formation. Synthetic nos RNA has biological activity identical to that of the posterior pole plasm. Injection of nos RNA rescues the segmentation defect of embryos derived from females mutant for all nine known posterior group genes. Injection of nos RNA into the anterior is able to direct formation of ectopic posterior structures. Our results demonstrate that a localized source of nos RNA is sufficient to specify abdominal segmentation and imply that other posterior group genes are required for localization, stabilization, or distribution of the nos gene product.  相似文献   

10.
11.
12.
Seven zygotically active genes are required for normal patterning of the dorsal 40% of the Drosophila embryo. Among these genes, decapentaplegic (dpp) has the strongest mutant phenotype: in the absence of dpp, all cells in the dorsal and dorsolateral regions of the embryo adopt fates characteristic of more ventrally derived cells (Irish and Gelbart (1987) Genes Dev. 1, 868-879). Here we describe the phenotypes caused by alleles of another of this set of genes, tolloid, and show that tolloid is required for dorsal, but not dorsolateral, pattern. Extragenic suppressors of tolloid mutations were isolated that proved to be mutations that elevate dpp activity. We studied the relationship between tolloid and dpp by analyzing the phenotypes of tolloid embryos with elevated numbers of the dpp gene and found that doubling the dpp+ gene dosage completely suppressed weak tolloid mutants and partially suppressed the phenotypes of tolloid null mutants. We conclude that the function of tolloid is to increase dpp activity. We also examined the effect of doubling dpp+ gene dosage on the phenotypes caused by other mutations affecting dorsal development. Like tolloid, the phenotypes of mutant embryos lacking shrew gene function were suppressed by elevated dpp, indicating that shrew also acts upstream of dpp to increase dpp activity. In contrast, increasing the number of copies of the dpp gene enhanced the short gastrulation (sog) mutant phenotype, causing ventrolateral cells to adopt dorsal fates. This indicates that sog gene product normally blocks dpp activity ventrally. We propose that the tolloid, shrew and sog genes are required to generate a gradient of dpp activity, which directly specifies the pattern of the dorsal 40% of the embryo.  相似文献   

13.
DICER-LIKE1: blind men and elephants in Arabidopsis development   总被引:14,自引:0,他引:14  
  相似文献   

14.
Unfertilized eggs and fertilized embryos from Drosophila mothers mutant for the plutonium (plu) gene contain giant polyploid nuclei resulting from unregulated S-phase. The PLU protein, a 19-kDa ankyrin repeat protein, is present in oocytes and early embryos but is not detectable after the completion of the initial rapid S-M cycles of the embryo. The persistence of the protein during the early embryonic divisions is consistent with a direct role in linking S-phase and M-phase. When ectopically expressed in the eye disc, PLU did not perturb the cell cycle, suggesting that PLU regulates S-phase only in early embryonic development. The pan gu (png) and giant nuclei (gnu) genes also affect the S-phase in the unfertilized egg and early embryo. We show that functional png is needed for the presence of PLU protein. By analyzing png mutations of differing severity, we find that the extent of the png mutant phenotype inversely reflects the level of PLU protein. Our data suggest that PLU protein is required at the time of egg activation and the completion of meiosis.  相似文献   

15.
T A Jongens  B Hay  L Y Jan  Y N Jan 《Cell》1992,70(4):569-584
The first cell fate specification process in the Drosophila embryo, formation of the germline precursors, requires posteriorly localized germ plasm. We have cloned a gene, germ cell-less (gcl), required for germline formation. Posterior localization of the gcl messenger RNA (mRNA) requires the function of those genes essential for the localization of both nanos RNA, which specifies the abdomen, and the germ cell determinants. Mothers with reduced gcl function give rise to sterile adult progeny that lack germ cells. In embryos with reduced maternal gcl product, the germ cell precursors fail to form properly. Consistent with this phenotype, gcl protein specifically associates with those nuclei that later become the nuclei of the germ cell precursors. These observations suggest that gcl functions in the germ cell specification pathway.  相似文献   

16.
Searches of zebrafish EST and whole genome shotgun sequence databases for sequences encoding the sterol-sensing domain (SSD) protein motif identified two sets of DNA sequences with significant homology to the Drosophila dispatched gene required for release of secreted Hedgehog protein. Using morpholino antisense oligonucleotides, we found that inhibition of one of these genes, designated Disp1, results in a phenotype similar to that of the "you-type" mutants, previously implicated in signalling by Hedgehog proteins in the zebrafish embryo. Injection of disp1 mRNA into embryos homozygous for one such mutation, chameleon (con) results in rescue of the mutant phenotype. Radiation hybrid mapping localised disp1 to the same region of LG20 to which the con mutation was mapped by meiotic recombination analysis. Sequence analysis of disp1 cDNA derived from homozygous con mutant embryos revealed that both mutant alleles are associated with premature termination codons in the disp1 coding sequence. By analysing the expression of markers of specific cell types in the neural tube, pancreas and myotome of con mutant and Disp1 morphant embryos, we conclude that Disp1 activity is essential for the secretion of lipid-modified Hh proteins from midline structures.  相似文献   

17.
18.
19.
The 'discless' mutations are zygotic lethals of Drosophila melanogaster with lethal phase at the larva/pupa boundary. They have been shown to identify genes whose functions are required for cell proliferation in the soma. We analysed mosaic females (generated by pole cell transplantation or by the dominant female sterile technique) with mutant germ line and normal soma and concluded that (1) the discless genes are required for the proliferation of the female germ line cells. (2) The discless genes are expressed during oogenesis and (3) as suggested by indirect evidence, the maternally provided gene products are necessary for cell proliferation in the embryo. It is suggested, that the same sets of genes control proliferation in the soma, germ line and-through the maternal effect-embryos in Drosophila.  相似文献   

20.
In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout evolution. Less is known about the molecules that mediate the steps subsequent to myogenesis, e. g. myotube guidance and attachment to tendon cells. We use the stereotypic pattern of the Drosophila embryonic body wall musculature in genetic approaches to identify novel factors required for muscle attachment site selection. Here, we show that Wnt5 is needed in this process. The lateral transverse muscles frequently overshoot their target attachment sites and stably attach at novel epidermal sites in Wnt5 mutant embryos. Restoration of WNT5 expression in either the muscle or the tendon cell rescues the mutant phenotype. Surprisingly, the novel attachment sites in Wnt5 mutants frequently do not express the Stripe (SR) protein which has been shown to be required for terminal tendon cell differentiation. A muscle bypass phenotype was previously reported for embryos lacking the WNT5 receptor Derailed (DRL). drl and Wnt5 mutant embryos also exhibit axon path finding errors. DRL belongs to the conserved Ryk receptor tyrosine kinase family which includes two other Drosophila orthologs, the Doughnut on 2 (DNT) and Derailed-2 (DRL-2) proteins. We generated a mutant allele of dnt and find that dnt, but not Drl-2, mutant embryos also show a muscle bypass phenotype. Genetic interaction experiments indicate that drl and dnt act together, likely as WNT5 receptors, to control muscle attachment site selection. These results extend previous findings that at least some of the molecular pathways that guide axons towards their targets are also employed for guidance of muscle fibers to their appropriate attachment sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号