首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outcomes of ecosystem restoration projects should be periodically monitored to inform subsequent adaptive management decisions. In 2012, a project was begun to remove both invasive alien plants and fish from the Rondegat River in South Africa. Although the initial post‐intervention dynamics of aquatic fauna have been documented, the results of the simultaneous clearing of dense riparian stands of alien trees and shrubs have not been reported. We examined native riparian vegetation recovery over 3 years after alien plant clearing. We documented increased cover of native riparian shrubs, but a simultaneous increase of alien and native weedy grass cover. Secondary invasions, especially by grasses, can have strong effects on ecosystem dynamics and achieving the goals of restoration may therefore require additional active management. Our findings provide an initial baseline reference for future monitoring and adaptive management decisions.  相似文献   

2.
This article explores some fundamental aspects of ecological restoration dynamics when an ecosystem is exposed to and altered by environmental disturbances like invasive alien plants and metals/particulates. These dynamics are assessed in socioeconomic and phytoremediation terms with respect to the perspective of emerging nations (e.g. an Indo‐Burma global biodiversity hotspot). In this short report, we discussed the positive ecological uses of invasive alien plants in remediation/restoration of the contaminated environment. Therefore, the impacts of invasive alien plants on the ecosystem are analyzed as prerequisite for remediation/restoration efforts. The utility of an integrated approach is proposed as a promising option to help restore or sustain the socioecological systems from diverse disturbances.  相似文献   

3.
Across the globe, invasive alien species cause severe environmental changes, altering species composition and ecosystem functions. So far, mountain areas have mostly been spared from large‐scale invasions. However, climate change, land‐use abandonment, the development of tourism and the increasing ornamental trade will weaken the barriers to invasions in these systems. Understanding how alien species will react and how native communities will influence their success is thus of prime importance in a management perspective. Here, we used a spatially and temporally explicit simulation model to forecast invasion risks in a protected mountain area in the French Alps under future conditions. We combined scenarios of climate change, land‐use abandonment and tourism‐linked increases in propagule pressure to test if the spread of alien species in the region will increase in the future. We modelled already naturalized alien species and new ornamental plants, accounting for interactions among global change components, and also competition with the native vegetation. Our results show that propagule pressure and climate change will interact to increase overall species richness of both naturalized aliens and new ornamentals, as well as their upper elevational limits and regional range‐sizes. Under climate change, woody aliens are predicted to more than double in range‐size and herbaceous species to occupy up to 20% of the park area. In contrast, land‐use abandonment will open new invasion opportunities for woody aliens, but decrease invasion probability for naturalized and ornamental alien herbs as a consequence of colonization by native trees. This emphasizes the importance of interactions with the native vegetation either for facilitating or potentially for curbing invasions. Overall, our work highlights an additional and previously underestimated threat for the fragile mountain flora of the Alps already facing climate changes, land‐use transformations and overexploitation by tourism.  相似文献   

4.
Biological invasions are a global phenomenon that threatens biodiversity, and few, if any, ecosystems are free from alien species. The outcome of human‐mediated introductions is affected by the invasiveness of species and invasibility of ecosystems, but research has primarily focused on defining, characterizing and identifying invasive species; ecosystem invasibility has received much less attention. A prerequisite for characterizing invasibility is the ability to compare levels of invasion across ecosystems. In this paper, we aim to identify the best way to quantify the level of invasion by nonnative animals and plants by reviewing the advantages and disadvantages of different metrics. We explore how interpretation and choice of these measures can depend on the objective of a study or management intervention. Based on our review, we recommend two invasion indices and illustrate their use by applying them to two case studies. Relative alien species richness and relative alien species abundance indicate the contribution that alien species make to a community. They are easy to measure, can be applied to various taxa, are independent of scale and are comparable across regions and ecosystems, and historical data are often available. The relationship between relative alien richness and abundance can indicate the presence of dominant alien species and the trajectory of invasion over time, and can highlight ecosystems and sites that are heavily invaded or especially susceptible to invasion. Splitting species into functional groups and examining invasion patterns of transformer species may be particularly instructive for gauging effects of alien invasion on ecosystem structure and function. Establishing standard, transparent ways to define and quantify invasion level will facilitate meaningful comparisons among studies, ecosystem types and regions. It is essential for progress in ecology and will help guide ecosystem restoration and management.  相似文献   

5.
Aim Spatial scale is critical for understanding and managing biological invasions. In providing direction to managing alien plant invasions, much emphasis is placed on collecting spatially explicit data. However, insufficient thought is often given to how the data are to be used, frequently resulting in the incompatibility of the data for different uses. This paper explores the role of spatial scale in interpreting, managing and monitoring alien plant invasions in a large protected area. Location Kruger National Park, South Africa. Methods Using 27,000 spatially‐explicit records of invasive alien plants for the Kruger National Park (> 20,000 km2) we assessed alien plant species richness per cell at nine different scales of resolution. Results When assessing the patterns of alien plants at the various scales of resolution, almost identical results are obtained when working at scales of quarter‐degree grids and quaternary watersheds (the fourth level category in South Africa's river basin classification system). Likewise, insights gained from working at resolutions of 0.1–0.5 km and 1–5 km are similar. At a scale of 0.1 × 0.1 km cells, only 0.4% of the Kruger National Park is invaded, whereas > 90% of the park is invaded when mapped at the quarter‐degree cell resolution. Main conclusions Selecting the appropriate scale of resolution is crucial when evaluating the distribution and abundance of alien plant invasions, understanding ecological processes, and operationalizing management applications and monitoring strategies. Quarter‐degree grids and quaternary watersheds are most useful at a regional or national scale. Grid cells of 1 to 25 km2 are generally useful for establishing priorities for and planning management interventions. Fine‐scale data are useful for informing management in areas which are small in extent; they also provide the detail appropriate for assessing patterns and rates of invasion.  相似文献   

6.
Abstract. The alien plant species and the ecological factors that facilitate their invasion to a coastal strip in the Baix Camp region (Tarragona, NE Spain) were studied. A detailed inventory of the area showed that 20% of the plant species, most of them from the American Continent, were aliens, many of which were strongly invasive. At the habitat level, the relationships between the invasive behaviour and a number of autecological, ecological and habitat variables were analysed by means of logistic analyses. In the best model five variables were related to alien plant invasions: climatic affinity, disturbance of the invaded habitat, route of introduction, soil moisture during summer, and life form. To elucidate the environmental factors that could be responsible for alien plant invasions at a regional scale, the number of alien taxa and the environmental features at 13 localities of the western Mediterranean area were analysed. The warm lowlands, subjected to low annual rainfall and high population density, exhibited the greatest reception capacity for alien plants. It is concluded that various specific environmental features – high mean temperatures, the abundance of riparian systems, the existence of biotopes with favourable water balance which harbour a great richness of alien species and the high human pressure to which the enclave is subjected, combined with the ecological requirements of the alien species and certain species attributes (biotype) can interact at different scales and have caused the over‐representation of alien plants.  相似文献   

7.
修晨  郑华  欧阳志云 《生态学报》2016,36(15):4689-4698
强烈的人类活动对自然生境的扰动促进了外来植物侵入河岸带,但不同类型的人类活动干扰对外来植物的影响有所不同。按照不同人类活动干扰类型设置了山峡段、平原段和城市段,通过比较河段间河岸带外来植物群落特征的差异,探讨不同人类活动干扰类型对河岸带外来植物群落的影响。结果表明:(1)永定河河岸带共有维管束植物27科72属101种,外来植物13科28属29种。外来种比例高达28.7%,其中82.4%的国外外来种来自美洲和亚洲。(2)不同河段间的外来植物群落的物种构成和优势度呈现出显著性差异。外来种比例由山峡段的20.9%,上升至平原段和城市段的30.2%和25.5%;而优势度由12.1%,分别上升至13.4%和17.5%。(3)不同河段间的外来植物群落生活型结构有显著性差异。多年生草本植物在山峡段比例最高,达到66.7%,在平原段和城市段较低,分别为46.2%和30.8%;而一年生草本植物在城市段比例最高,达到69.2%,在平原段和山峡段较低,分别为53.8%和33.3%。(4)平原段属于农业干扰类型,其河岸带外来植物主要以农业类杂草为主,如禾本科的假稻(Leersia japonica)和菊科的钻叶紫菀(Aster subulatu);城市段是城市干扰类型,外来植物中入侵种比例和优势度较高,典型入侵种为反枝苋(Amaranthus retroflexus)和牛筋草(Eleusine indica)等。北京永定河不同河段河岸带外来植物的种类构成特点,反映了河岸带外来植物受快速城市化、农业活动等不同人类活动干扰的影响呈逐渐扩大的趋势。  相似文献   

8.
As drivers of global change, biological invasions have fundamental ecological consequences. However, it remains unclear how invasive plant effects on resident animals vary across ecosystems, animal classes, and functional groups. We performed a comprehensive meta‐analysis covering 198 field and laboratory studies reporting a total of 3624 observations of invasive plant effects on animals. Invasive plants had reducing (56%) or neutral (44%) effects on animal abundance, diversity, fitness, and ecosystem function across different ecosystems, animal classes, and feeding types while we could not find any increasing effect. Most importantly, we found that invasive plants reduced overall animal abundance, diversity and fitness. However, this significant overall effect was contingent on ecosystems, taxa, and feeding types of animals. Decreasing effects of invasive plants were most evident in riparian ecosystems, possibly because frequent disturbance facilitates more intense plant invasions compared to other ecosystem types. In accordance with their immediate reliance on plants for food, invasive plant effects were strongest on herbivores. Regarding taxonomic groups, birds and insects were most strongly affected. In insects, this may be explained by their high frequency of herbivory, while birds demonstrate that invasive plant effects can also cascade up to secondary consumers. Since data on impacts of invasive plants are rather limited for many animal groups in most ecosystems, we argue for overcoming gaps in knowledge and for a more differentiated discussion on effects of invasive plant on native fauna.  相似文献   

9.
Biological invasions are a major threat to biodiversity and ecosystem functioning. Forest invasion by alien woody species can have cross-ecosystem effects. This is especially relevant in the case of stream–riparian forest meta-ecosystems as forest streams depend strongly on riparian vegetation for carbon, nutrients and energy. Forest invasion by woody species with dissimilar characteristics from native species may be particularly troublesome. The invasion of temperate deciduous broadleaf forests with low representation of nitrogen (N)-fixing species by N-fixers has the potential to induce ecosystem changes at the stream level. Although effects of tree invasion on stream ecosystems have been under assessed, knowledge of native and invasive tree characteristics allows prediction of invasion effects on streams. Here we present a conceptual model to predict the effects of forest invasion by alien N-fixing species on streams, using as a background the invasion of temperate deciduous broadleaf forests by leguminous Acacia species, which are among the most aggressive invaders worldwide. Effects are discussed using a trait-based approach to allow the model to be applied to other pairs of invaded ecosystem–invasive species, taking into account differences in species traits and environmental conditions. Anticipated effects of N-fixing species invasions include changes in water quality (increase in N concentration) and quantity (decrease in flow) and changes in litter input characteristics (altered diversity, seasonality, typology, quantity and quality). The magnitude of these changes will depend on the magnitude of differences in species traits, the extent and duration of the invasion and stream characteristics (e.g. basal nutrient concentration). The extensive literature on effects of nutrient enrichment of stream water, water scarcity and changes in litter input characteristics on aquatic communities and processes allows prediction of invasion effects on stream structure and function. The magnitude of invasion effects on aquatic communities and processes may, however, depend on interactions among different pathways (e.g. effects mediated by increases in stream nutrient concentration may contrast with those mediated by decreases in water availability or by decreases in litter nutritional quality). A review of the literature addressing effects of increasing cover of N-fixing species on streams suggests a wide application of the model, while it highlights the need to consider differences in the type of system and species when making generalizations. Changes induced by N-fixing species invasion on streams can jeopardize multiple ecosystem services (e.g. good quality water, hydroelectricity, leisure activities), with relevant social and economic consequences.  相似文献   

10.
Aquatic and riparian ecosystems are known to be highly vulnerable to invasive alien species (IAS), especially when subjected to human-induced disturbances. In the last three decades, we have witnessed a growing increase in plant invasions in Portugal and Spain (Iberian Peninsula, south-western Europe), with very detrimental economic, social and ecological effects. Some of these species, such as the giant reed (Arundo donax L.) and the water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub.), number among the world's worst weeds. We present an appraisal of this invasive alien river flora and the most problematic aquatic weeds. We review various aspects of invasion ecology, including spatial and temporal patterns of invasion, species invasiveness, species traits of invasive weeds, and relationships between human disturbance in rivers and surrounding areas and invasibility, and contextualize them in overall state-of-the-art terms. We also acknowledge the use of IAS as bioindicators of the ecological quality of rivers, wetlands and riparian zones. Remote-sensing tools and Geographic Information Systems for detecting and monitoring IAS in Iberian rivers are presented.  相似文献   

11.
横断山区为全球生物多样性热点地区之一, 也是全国生态屏障的重要组成部分。新建川藏铁路雅安至昌都段横跨横断山核心地区, 铁路建设形成的交通网络将沿线生物多样性热点区域与外界相连, 导致生物入侵风险陡增。为获得区域内外来入侵植物的种类及分布特征信息, 为即将开始的铁路工程建设、生态保护及生态修复等工作提供参考, 我们在雅安-昌都段内选择43个位点各进行长度1 km、宽度20 m的样线调查。研究结果显示: 雅安-昌都段共发现外来入侵植物58种, 隶属于18科42属, 其中出现频度最高的种类依次是牛膝菊(Galinsoga parviflora)、秋英(Cosmos bipinnatus)和鬼针草(Bidens pilosa)。从危害等级来看, 其中10种为恶性入侵种, 16种为严重入侵种, 8种为局部入侵种, 15种为一般入侵种, 9种为有待观察种, 超过半数种类具有明显入侵性。原产地分析结果显示美洲是该区域外来入侵植物的主要原产地。基于海拔及主要河流区段的比较研究发现: 入侵植物的种类数量呈现出明显的由东向西、由低海拔向高海拔逐渐递减的趋势, 该分布格局是环境因子和人类活动共同作用的结果。结合铁路沿线入侵现状和生境特征, 本文分析了铁路建设可能造成的外来植物入侵风险, 并针对入侵的防范提出了相应的建议。  相似文献   

12.
13.
Conservation ecology is a new paradigm of ecology that aims at scientific contributions to maintaining earth's biodiversity and is committed to ecosystem management indispensable to intergenerational long-term sustainability. Population ecology plays a central role in conservation ecology. Persistence of the metapopulation rather than that of each local population should be pursued in species conservation management. Biological interactions essential to reproduction and soil seed bank components of the population should be investigated and applied to planning for the conservation of a plant population. Gravelly floodplains and moist tall grasslands are among typical riparian habitats containing many threatened plants in Japan. These riparian habitats are now subjected not only to heavy fragmentation but also to intensive invasion of highly competitive alien (nonnative) plants. Extreme habitat isolation may result in reproductive failure or fertility selection in a plant population without pollinators, as exemplified by a nature reserve population of Primula sieboldii. Biological invasions, which are facilitated by extensive changes in the river environment including decreased seasonal flooding, abandonment of traditional vegetation management, eutrophication, and extensive clearing of the land for recreational use, threaten endemic riparian species. To preserve safe sites and growing conditions for threatened plants such as Aster kantoensis, active management to suppress the dominance of alien invader plants is necessary. Population management and habitat restoration should be based on sound information on the population ecology of both threatened and alien invader plants, designed as an ecological experiment to clarify effective ways for management. Received: September 18, 1998 / Revised: October 22, 2001 / Accepted: October 23, 2001  相似文献   

14.
Much of our current understanding of the impact of invasive species on plant communities is based on patterns occurring in the above-ground vegetation, while only few studies have examined changes in soil seed banks associated with plant invasions, despite their important role as determinants of vegetation dynamics. Here, we reviewed the literature on the impact of plant invasions on the seed bank and we provide a quantitative synthesis using a meta-analysis approach. Specifically, (1) we quantified the impact of 18 invasive alien plants on (i) species richness and (ii) density of the seed banks of invaded communities, based on 58 pair-wise invaded-uninvaded comparisons (cases); we identified (2) the invasive taxa that are responsible for the largest changes in the seed bank; and (3) the habitats where substantial changes occur. Our study showed three major findings: (1) species richness (68% of cases) and density (58% of cases) were significantly lower in native seed banks invaded by alien plants; (2) species richness and density of native and alien species were remarkably lower in seed banks invaded by large, perennial herbs compared to uninvaded sites; and (3) invaded seed banks were often associated with a larger richness and/or abundance of alien species. This study indicates a need for additional seed bank data in invasion ecology to characterize species-specific and habitat-specific impacts of plant invasions, and to determine whether changes in the seed banks of native and alien species are a symptom of environmental degradation prior to a plant invasion or whether they are its direct result. The findings of this study help improve our capacity to predict the long-term implications of plant invasions, including limitations in the recruitment of native species from the seed bank and the potential for secondary invasions by seeds of other alien species.  相似文献   

15.
Aim Biotic homogenization, the replacement of local biota by non‐indigenous and locally expanding species, is among the major effects of species invasions. Almost all studies related to this topic are focused on the species level, on taxonomic homogenization. Homogenization effects on trait diversity (functional homogenization) may be very important for ecosystem functioning, but they are rarely analysed, especially not at different spatial scales within a single study. This paper aims to examine how the presence of alien species (species introduced since 1500 ad ) affects the distribution of ploidy levels in the German flora at different spatial scales. Location Germany. Methods We used a resampling method and the Morisita–Horn dissimilarity index to calculate dissimilarities of ploidy level within and between alien and indigenous plants at three different spatial scales in Germany: (1) the entire country as one location, (2) between grid cells, and (3) within grid cells of a lattice covering Germany. Results We found a significant differentiation effect within grid cells of c. 130 km2, with alien plants increasing the variability of ploidy levels. The differentiation effect varies according to the scale used. At the coarsest scale (entire Germany), ploidy levels of alien plants tend to be more homogeneous in composition compared with those of native plants. At the intermediate scale (between grid cells), and even more pronounced at a small scale (within grid cells), ploidy levels are more heterogeneously distributed across Germany than those of native plant species. Main conclusions Homogenization of ploidy levels at a large scale (entire Germany) and differentiation at a small scale (within grid cells) is comparable with the patterns found in taxonomic homogenization analyses. This analysis is a first step towards understanding the impacts of plant invasions on a trait level. Differentiation and homogenization of ploidy levels might mirror the distribution of related ecological traits and therefore might have an impact on ecosystem functioning.  相似文献   

16.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

17.
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta‐analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure.  相似文献   

18.
Riparian zones are formed by interactions between fluvio-geomorphological processes, such as sediment deposition, and biota, such as vegetation. Establishment of invasive alien plant (IAP) species along rivers may influence vegetation dynamics, evidenced as higher seasonal or inter-annual fluctuations in native plant diversity when IAP cover is high. This could impact the overall functioning of riparian ecosystems. Conversely, fine sediment deposited in riparian zones after floods may replenish propagule banks, thus supporting recruitment of native species. The interactive effects of invasion and fine sediment deposition have hitherto, however, been ignored. Vegetation surveys across rivers varying in flow regime were carried out over 2 years to assess changes in community composition and diversity. Artificial turf mats were used to quantify over-winter sediment deposition. The viable propagule bank in soil and freshly deposited sediment was then quantified by germination trials. Structural Equation Models were used to assess causal pathways between environmental variables, IAPs and native vegetation. Greater variation in flow increased the cover of IAPs along riverbanks. An increased in high flow events and sediment deposition were positively associated with the diversity of propagules deposited. However, greater diversity of propagules did not result in a more diverse plant community at invaded sites, as greater cover of IAPs in summer reduced native plant diversity. Seasonal turnover in the above-ground vegetation was also accentuated at previously invaded sites, suggesting that a legacy of increased competition in previous years, not recent sediment deposition, drives above-ground vegetation structure at invaded sites. The interaction between fluvial disturbance via sediment deposition and invasion pressure is of growing importance in the management of riparian habitats. Our results suggest that invasion can uncouple the processes that contribute to resilience in dynamic habitats making already invaded habitats vulnerable to further invasions.  相似文献   

19.
Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human‐aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human‐aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture‐induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under‐investigated examples of how the effects of short‐term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well‐studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.  相似文献   

20.
The Southern Ocean Islands (SOI) have an exceptionally high conservation status, and human activity on the islands is low by comparison with more tropical islands. In consequence, overexploitation, pollution and habitat destruction have had little influence on the invertebrate biotas of the islands, although overexploitation of pelagic species has the potential for an indirect influence via reduction of nutrient inputs to the terrestrial systems. By contrast, invasive alien species, the local effects of global climate change, and interactions between them are having large impacts on invertebrate populations and, as a consequence, on ecosystem functioning. Climate change is not only having direct impacts on indigenous invertebrates, but also seems to be promoting the ease of establishment of new alien invertebrate species. It is also contributing to population increases of invertebrate alien species already on the islands, sometimes with pronounced negative consequences for indigenous species and ecosystem functioning. Moreover, alien plants and mammals are also affecting indigenous invertebrate populations, often with climate change expected to exacerbate the impacts. Although the conservation requirements are reasonably well-understood for terrestrial systems, knowledge of freshwater and marine near-shore systems is inadequate. Nonetheless, what is known for terrestrial, freshwater and marine systems suggests that ongoing conservation of SOI invertebrates requires intervention from the highest political levels internationally, to slow climate change, to local improvements of quarantine measures to reduce the rates and impacts of biological invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号