共查询到20条相似文献,搜索用时 0 毫秒
1.
Courchamp F Chapuis JL Pascal M 《Biological reviews of the Cambridge Philosophical Society》2003,78(3):347-383
The invasion of ecosystems by exotic species is currently viewed as one of the most important sources of biodiversity loss. The largest part of this loss occurs on islands, where indigenous species have often evolved in the absence of strong competition, herbivory, parasitism or predation. As a result, introduced species thrive in those optimal insular ecosystems affecting their plant food, competitors or animal prey. As islands are characterised by a high rate of endemism, the impacted populations often correspond to local subspecies or even unique species. One of the most important taxa concerning biological invasions on islands is mammals. A small number of mammal species is responsible for most of the damage to invaded insular ecosystems: rats, cats, goats, rabbits, pigs and a few others. The effect of alien invasive species may be simple or very complex, especially since a large array of invasive species, mammals and others, can be present simultaneously and interact among themselves as well as with the indigenous species. In most cases, introduced species generally have a strong impact and they often are responsible for the impoverishment of the local flora and fauna. The best response to these effects is almost always to control the alien population, either by regularly reducing their numbers, or better still, by eradicating the population as a whole from the island. Several types of methods are currently used: physical (trapping, shooting), chemical (poisoning) and biological (e.g. directed use of diseases). Each has its own set of advantages and disadvantages, depending on the mammal species targeted. The best strategy is almost always to combine several methods. Whatever the strategy used, its long-term success is critically dependent on solid support from several different areas, including financial support, staff commitment, and public support, to name only a few. In many cases, the elimination of the alien invasive species is followed by a rapid and often spectacular recovery of the impacted local populations. However, in other cases, the removal of the alien is not sufficient for the damaged ecosystem to revert to its former state, and complementary actions, such as species re-introduction, are required. A third situation may be widespread: the sudden removal of the alien species may generate a further disequilibrium, resulting in further or greater damage to the ecosystem. Given the numerous and complex population interactions among island species, it is difficult to predict the outcome of the removal of key species, such as a top predator. This justifies careful pre-control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe. In addition, long-term monitoring ofthe post-eradication ecosystem is crucial to assess success and prevent reinvasion. 相似文献
2.
Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale 总被引:11,自引:0,他引:11
WILFRIED THUILLER † DAVID M. RICHARDSON‡ PETR PYEK§¶ GUY F. MIDGLEY GREG O. HUGHES MATHIEU ROUGET 《Global Change Biology》2005,11(12):2234-2250
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted. 相似文献
3.
Freshwater biodiversity is threatened by several mechanisms, of which the introduction of non-indigenous species and habitat
alteration are the two most important. Exotic species act at various levels of organisation of macroinvertebrate communities,
and are involved in different processes mediating their impacts on biodiversity, such as habitat modification or negative
interactions with autochthonous fauna. The present work gives a list of the 43 French freshwater non-indigenous species, which
represent 1.2% of the French freshwater macroinvertebrates. We provide their geographic origins, their distributions among
zoological units by comparison with the native fauna and their functional characteristics according to a recent typology based
on bio/ecological traits. An exponential trend of the cumulated number of non-indigenous species was evidenced, with a clumping
of invaders within crustaceans and molluscs. Donor areas of non-indigenous species are in majority European, and the Ponto-Caspian
basin is identified as the principal one. This pattern could be explained by a spread along waterways but its origin lies
in a process of recolonisation of defaunated areas following several episodes of glaciation/deglaciation in Western Europe
during the last 80,000 years. Finally, from a functional point of view, non-indigenous species exhibit a limited diversity,
with two functional groups representing 80% of them. 相似文献
4.
- 1 We provide an updated distribution and dispersal rate of the introduced European rabbit Oryctolagus cuniculus in Argentina.
- 2 According to our results this invasive species is currently colonizing parts of Mendoza and Neuquén Provinces, where rivers are very important in the spread of the rabbits, especially in unfavourable areas. The maximun rate of dispersal registered in this study was 9 km/year.
- 3 Some information was obtained to indicate that the presence of this exotic species threatens agriculture, livestock, forestry, and natural ecosystems of the Patagonia region.
5.
外来生物入侵导致全球生物多样性下降,极大地威胁着生态系统健康,已造成很大的生态损失与经济损失。近年来,随着生物入侵的加剧,全球对生物入侵的研究力度不断加大。外来入侵生物的生态危害与风险评估可以为人们提供对入侵可能性和入侵方式更直接的信息,从而为管理者制定管理策略提供依据。基于最近20年间(1995—2014年)科学文献数据库Web of Science的科学引文索引数据库扩展版(SCI-E)中数据,对外来入侵生物的生态危害与风险评估方面的研究进行了文献计量分析,旨在了解当前国际研究现状,以便推动中国的生物入侵相关研究。为了全面掌握全球外来生物入侵生态危害与风险评估方面的研究,采用Bibexcel与TDA文献计量工具,对Web of Science数据库中相关文献进行了分析,去重后共获取5492篇文献。结果表明:近20年(1995—2014年)入侵生物的生态危害与风险评估方面的研究刊文量呈现前缓后剧增的趋势,2008—2014年进入了快速发展阶段,文献数量急剧增加,2014年达到最高(511篇);美国发文量远超其它国家,占据主导地位,中国刊文量排名第5。美国、澳大利亚、法国、英国、德国的研究论文影响力较大。刊文量最多的研究机构为美国农业部(USDA),中国科学院发文量排名第10位。研究学科主要为昆虫学、农艺学、植物科学、生态学,研究热点集中在生物防治、风险评估、粮食作物和经济作物的病虫害防治、杂草防控,以及生物入侵与气候变化的关系等方面。有关外来入侵生物的生态危害与风险评估的研究多集中于北美、澳大利亚和欧洲,未来要加强亚洲地区,特别是中国外来生物入侵风险评估的研究;要加强气候变化对外来生物物种特性的影响研究,更多关注入侵生物的生态控制与生态恢复方面的研究,以便更好地为今后长期有效地防控入侵生物提供理论与技术指导。 相似文献
6.
Anna Walentowitz Bernd Lenzner Franz Essl Nichola Strandberg Alvaro Castilla-Beltrán José María Fernández-Palacios Svante Björck Simon Connor Simon G. Haberle Karl Ljung Matiu Prebble Janet M. Wilmshurst Cynthia A. Froyd Erik J. de Boer Lea de Nascimento Mary E. Edwards Janelle Stevenson Carl Beierkuhnlein Manuel J. Steinbauer Sandra Nogué 《Ecology letters》2023,26(5):729-741
Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species. We matched fossil pollen data with botanical status information (native, non-native), and quantified the timing, trajectories and magnitude of non-native plant vegetational change on 29 islands over the past 5000 years. We recorded a proportional increase in pollen of non-native plant taxa within the last 1000 years. Individual island trajectories are context-dependent and linked to island settlement histories. Our data show that non-native plant introductions have a longer and more dynamic history than is generally recognized, with critical implications for biodiversity baselines and invasion biology. 相似文献
7.
《生物多样性》编辑部 《生物多样性》2014,22(1):112
<正>2013年度,以下专家为《生物多样性》审阅稿件,在此向大家致以深切的谢意!正是有了各位专家认真、细致、及时地审阅稿件,才保障了刊物的学术质量,缩短了稿件的处理周期,从而帮助刊物赢得更多读者和作者的信赖。 相似文献
8.
新西兰鸟类入侵成功的有关因素 总被引:3,自引:0,他引:3
了解外来入侵物种(alien invasive species,AIS)的生物学涉及纯生物学及应用生物学的问题,但是靠预先设计的实验来加深人们的了解显然是不可能的,然而我们可以研究现有的入侵,这也是一个很好的途径,本文利用新西兰历史上的一些记录,探讨了物种在新环境中成功定居的因素,令人惊奇的是,物种间的生物学差异对成功的定居几乎没有什么作用,相反,真正起作用的是一个物种被引入新环境的频率及数量。 相似文献
9.
Abstract. The common waxbill Estrilda astrild was first introduced to Portugal from Africa in 1964, and has spread across much of the country and into Spain. We modelled the expansion of the common waxbill on a 20 × 20 km UTM grid in 4‐year periods from 1964 to 1999. The time variation of the square root of the occupied area shows that this expansion process is stabilizing in Portugal, and reasons for this are discussed. Several methods used to model biological expansions are not appropriate for the present case, because little quantitative data are available on the species ecology and because this expansion has been spatially heterogeneous. Instead, colonization on a grid was modelled as a function of several biophysical and spatio‐temporal variables through the fitting of a multivariate autologistic equation. This approach allows examination of the underlying factors affecting the colonization process. In the case of the common waxbill it was associated positively with its occurrence in adjacent cells, and affected negatively by altitude and higher levels of solar radiation. 相似文献
10.
Abstract There is a tendency for both scientists and lay people to regard invading alien species as inherently ‘bad’ and native species as inherently ‘good.’ Past invasions occurred commonly without human assistance. They rarely caused large, lasting decreases in species richness or ecological damage. Current invasions provide opportunities for scientific study. They are unintentional, uncontrolled experiments, which can provide insights into attributes of successful colonists, relationships with native species, and impacts on the structure and function of ecological systems. 相似文献
11.
N. A. Rossiter-Rachor S. A. Setterfield M. M. Douglas L. B. Hutley G. D. Cook 《Ecosystems》2008,11(1):77-88
Invasive alien grasses can substantially alter fuel loads and fire regimes which could have significant consequences for fire-mediated
nutrient losses. The effects of the alien grass Andropogon gayanus Kunth. (Gamba grass) on fire-mediated nutrient losses was evaluated in Australia’s tropical savannas. Losses of macronutrients
during fire were determined by comparing the nutrient pools contained in the fine fuel before fire and in the ash after fire.
Pre-fire grass nutrient pools were significantly higher in A. gayanus plots than in native grass plots for all nutrients measured (N, P, K, S, Ca, and Mg). Nutrient losses were substantially
higher in A. gayanus plots, with 113% higher losses for N, 80% for P, 56% for K, 63 for S, 355% for Ca, and 345% for Mg. However, only losses
of N and Mg varied significantly between grass types. A simplified savanna ecosystem nutrient budget estimated that A. gayanus fires led to the net N loss of 20 kg ha−1 y−1. This is a conservative estimate because total fuel loads were relatively low (7.85 t ha−1) for A. gayanus invaded plots leading to a relatively moderate intensity fire (6,408 kW m−1). Higher A. gayanus fuel loads and fire intensities could potentially lead to losses of up to 61.5 kg N ha−1 from the grass fuel. Over the long term, this is likely to lead to depletion of soil nutrients, particularly N, in the already
low-fertility tropical savanna soils. 相似文献
12.
Dario Capizzi 《Mammal Review》2020,50(2):124-135
- Impacts of alien invasive species on island communities and ecosystems may be even more detrimental than on the mainland. Therefore, since the 1950s, hundreds of restoration projects have been implemented worldwide, with the aim of controlling or eradicating alien species from islands. To date, no review has been focused on eradication on Mediterranean islands. To fill the gap, I reviewed the available information concerning mammal eradications so far carried out on Mediterranean islands, examining the details of several aspects of project implementation and monitoring.
- I obtained data for 139 attempted eradications on 107 Mediterranean islands in eight countries, with Greece, Italy, and Spain accounting for the highest number. Eradication projects targeted 13 mammal species. The black rat Rattus rattus was the target of over 75% of the known attempted eradications in the Mediterranean Basin; other species targeted were feral goat Capra hircus, house mouse Mus musculus, European rabbit Oryctolagus cuniculus, and domestic cat Felis catus. The most widely adopted technique was poisoning (77% of all eradications), followed by trapping (15%) and hunting (4%). However, techniques were largely target-specific.
- The average failure rate was about 11%. However, this percentage varied according to the specific mammalian order, and eradications of Carnivora failed more often than those of other mammals. Among rodents, house mouse eradication attained a very high failure rate (75%). Reinvasion occurred after 15% of successful eradications.
- A better understanding of the motivations of animal rights activists may improve the chance of success when eradicating charismatic or domesticated species. Furthermore, it is crucial to collect data and case studies about reinvasions, in order to strengthen biosecurity programmes following eradication. As in other parts of the world, the next frontier in alien mammal management on Mediterranean islands concerns the eradication of invasive species from inhabited islands.
13.
The biology of insularity: an introduction 总被引:5,自引:0,他引:5
Donald R. Drake Christa P. H. Mulder David R. Towns & Charles H. Daugherty 《Journal of Biogeography》2002,29(5-6):563-569
14.
Juan Valentín PliegoSnchez Christopher Blair Aníbal H. Díaz de la VegaPrez Víctor H. JimnezArcos 《Ecology and evolution》2021,11(11):6579
We compile a Mexican insular herpetofaunal checklist to estimate endemism, conservation status, island threats, net taxonomic turnover among six biogeographic provinces belonging to the Nearctic and Neotropical regions, and the relationships between island area and mainland distance versus species richness. We compile a checklist of insular herpetofaunal through performing a literature and collection review. We define the conservation status according to conservation Mexican law, the Red List of International Union for Conservation of Nature, and Environmental Vulnerability Scores. We determine threat percentages on islands according to the 11 major classes of threats to biodiversity. We estimate the net taxonomic turnover with beta diversity analysis between the Nearctic and Neotropical provinces. The Mexican insular herpetofauna is composed of 18 amphibian species, 204 species with 101 subspecies of reptiles, and 263 taxa in total. Endemism levels are 11.76% in amphibians, 53.57% in reptiles, and 27.91% being insular endemic taxa. Two conservation status systems classify the species at high extinction risk, while the remaining system suggests less concern. However, all systems indicate species lacking assessment. Human activities and exotic alien species are present on 60% of 131 islands. The taxonomic turnover value is high (0.89), with a clear herpetofaunal differentiation between the two biogeographic regions. The species–area and species–mainland distance relationships are positive. Insular herpetofauna faces a high percentage of threats, with the Neotropical provinces more heavily impacted. It is urgent to explore the remaining islands (3,079 islands) and better incorporate insular populations and species in ecological, evolutionary, and systematic studies. In the face of the biodiversity crisis, islands will play a leading role as a model to apply restoration and conservation strategies. 相似文献
15.
- Biological invasions are a major driver of biodiversity loss, but no study has described the scope of threats to bats (Chiroptera) by invasive species.
- We reviewed the literature for negative effects of invasive species to bats and summarised threats according to four categories: predation, disease, competition, and indirect interactions. We identified threats of 37 invasive species to 40 bat species. Ten bat species were threatened by more than one invasion pathway.
- About 38 percent of cases are speculative and 18 percent circumstantial, many attributed to overlapping ranges, and most accounts do not quantify effects needed to forecast bat population impacts.
- Evidence of cat predation is frequently cited, constituting the greatest incidence of observational data. Other direct and indirect impacts were documented from goats, dogs, brown tree snake, rainbow lorikeet, rose‐ringed parakeet, yellow crazy ant, giant centipede, palm, burdock, avian cholera, and white‐nose syndrome. Circumstantial evidence suggests impacts by rats, stoats, coqui frog, common wolf snake, little fire ant, kudzu, and Lantana camara. Other impacts by giant centipede, yellow crazy ant, cats, goats, rats, and avian cholera are speculative, as are those from pigs, deer, white eye, common starling, house sparrow, rock dove, barn and little owls, brush‐tailed possum, honeybee, wasp, phytophagous insects, tamarisk, Cinnamomum verum, and Tabebuia pallida.
- Over 60 percent of bat species reviewed are island‐dwelling, corresponding with evidence indicating that most extinctions occur on islands and invasive species’ impacts are worse for island than mainland populations.
- Although appreciable bat population reductions owing to invasive species are often unproven, invasions are likely to exacerbate effects of other vulnerabilities. Multiple invaders and synergistic interactions may ultimately lead to species losses.
- Managers should exercise the precautionary principle by taking action against non‐native species when first detected, even if new species do not appear to be detrimental.
16.
17.
Riparian habitats are particularly susceptible to invasion by non‐native plants. At present, attempts to build consensus as to what the primary drivers of plant invasion in riparian ecosystems might be is hindered by the absence of common standards for data collected on plant species (e.g. occurrence, or relative abundance). Mimulus guttatus L., a non‐native riparian plant species, was used as a model to determine how environmental drivers influence two aspects of invasibility: species occurrence and abundance (assessed in relation to three variables number of patches, patch area and number of stems per patch). Mimulus occurrence and abundance, together with 20 environmental variables, were surveyed in almost 700 contiguous 50‐m‐long riverbank segments within a catchment in north‐east Scotland. More than half of the segments had been colonized by Mimulus. Occurrence and number of patches responded to similar environmental gradients, particularly bare sediment, boulders, high soil moisture, short‐statured ruderal communities, and open canopies, and tended to be highest downstream where the river was widest. In contrast to occurrence and patch number, patch area and stem number per patch were higher in the upper reaches of the catchment and were positively associated with low tree canopy and vegetation dominated by light‐demanding species and smaller‐statured species. Patch area and stem number per patch were also positively related to grazing. This study has highlighted the importance of assessing more than one measure of invasion success (occurrence or patch number and either patch area or stem number per patch), as they are each determined by a different suite of environmental variables. Abiotic factors, such as sediment availability and presence of boulders, appeared to be the major determinants of occurrence and patch number, whereas biotic factors, such as interspecific competition and grazing, were more important ecological determinants underlying area and stem number per patch. 相似文献
18.
Historical and modern migrations and dispersal of most marine organisms (intertidal, benthic, meiofaunal, planktonic, nektonic, or neustonic) are classically interpreted in terms of their natural dispersal potential. Exceptions are introduced species, largely recognized since the 19th century, known to have been transported by human activities. However, humans were transporting species along coastlines and across oceans for millennia and centuries prior to the advent of the first biological surveys. Thus, the presumptive natural distributions of many species may be questioned. Reviewed here are some basic concepts about invasions of non-native species. Human activities move species isolated in time and space from other oceans or continents, and thus human-mediated transport does not simply speed up natural dispersal processes. Both past and modern-day invasions are often overlooked, leading to an underestimation of the scale of invasion diversity and impact. Because vectors, donor regions, and recipient regions change over time, invasions will continue along long-standing but un-managed corridors. The impact of most invasions has never been studied and, therefore, it is not possible to conclude that most invasions have no impact, nor is it generally possible to say that invasions have become `integrated' into a community or ecosystem in ecological time. Finally, invasions in the ocean are not limited to harbours and ports, but are found in a wide variety of marine habitats, ranging from the open ocean continental shelf to exposed rocky shores. The existence of human-mediated vectors has created extraordinary challenges to our understanding and interpretation of the ecology, biogeography, evolutionary biology, and conservation biology of marine communities. 相似文献
19.
Gisela C. Stotz James F. Cahill Jonathan A. Bennett Cameron N. Carlyle Edward W. Bork Diana Askarizadeh Sandor Bartha Carl Beierkuhnlein Bazartseren Boldgiv Leslie Brown Marcelo Cabido Giandiego Campetella Stefano Chelli Ofer Cohen Sandra Díaz Lucas Enrico David Ensing Batdelger Erdenetsetseg Alessandra Fidelis Heath W. Garris Hugh A. L. Henry Anke Jentsch Mohammad Hassan Jouri Kadri Koorem Peter Manning Randall Mitchell Mari Moora Gerhard E. Overbeck Jason Pither Kurt O. Reinhart Marcelo Sternberg Radnaakhand Tungalag Sainbileg Undrakhbold Margaretha van Rooyen Camilla Wellstein Martin Zobel Lauchlan H. Fraser 《Global Ecology and Biogeography》2020,29(3):482-490
20.
Tessa J. G. Cooper Jessica du Toit Elani Steenkamp James S. Pryke Francois Roets 《African Journal of Ecology》2017,55(3):316-327
Island species are susceptible to extinction through disturbances such as habitat transformation. Due to the small size and isolation of islands, species have limited options for refuges and recolonization, making their rehabilitation a conservation priority. Robben Island is a continental island, isolated from the mainland ca. 15 000 years ago, and has been degraded by humans and alien species for nearly 400 years. Mainland areas with similar vegetation should be good reference sites for the biological restoration of the island due to historical connectedness. However, very little information exists as to which species were lost. Here we aim to identify the best mainland sites to use as reference sites for Robben Island based on remaining arthropod diversity on the island. Sites found to be most similar in terms of arthropod diversity to Robben Island were sites north of Robben Island (Elandsbaai and Dwarskersbos) rather than the geographically closest locations. These sites therefore represent ideal reference sites for biological restoration of the island. We do not suggest the reintroduction of species from these localities, but rather Robben Island should be restored to match their vegetation height and cover. 相似文献