首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uptake of sixteen (14)C-labeled amino acids by the indigenous heterotrophic microflora of Upper Klamath Lake, Oregon, was measured using the kinetic approach. The year-long study showed a seasonal variation in the maximum uptake velocity, V(max), of all the amino acids which was proportional to temperature. The maximum total flux of amino acids by the heterotrophic microflora ranged from 1.2 to 11.9 mumol of C per liter per day (spring to summer). Glutamate, asparagine, aspartate, and serine had the highest V(max) values and were respired to the greatest extent. The percentages of the gross (net + respired) uptake of the amino acids which were respired to CO(2) ranged from 2% for leucine to 63% for glutamate. Serine, lysine, and glycine were the most abundant amino acids found in Upper Klamath Lake surface water; at intermediate concentrations were alanine, aspartate, and threonine; and the remaining amino acids were always below 7.5 x 10(-8) M (10 mug/liter). The amino acid concentrations determined chemically appear to be the sum of free and adsorbed amino acids, since the values obtained were usually greater than the (K(t) + S(n)) values obtained by the heterotrophic uptake experiments.  相似文献   

2.
The active transport of magnesium by cells of Bacillus subtilis strain W23 occurs by a highly specific transport system (Mg(2+) is favored over Mn(2+), Co(2+), or Ca(2+)) that is energy dependent (i.e., glucose is required in minimal medium and the system is inhibited by cyanide and m-chlorophenyl carbonylcyanidehydrazone). The rate of magnesium uptake by log-phase B. subtilis cells follows saturation kinetics with a K(m) of 2.5 x 10(-4) M and a V(max) of 4.4 mumol per min per g (dry weight) at 30 C. Manganese is a competitive inhibitor showing a K(i) of 5 x 10(-4) M. During sporulation the rate of magnesium transport declines. This decline in rate is specific for the magnesium system as the manganese and calcium transport rates increase. The residual magnesium transport function in sporulating cells shows both an altered K(m) and an altered V(max). The magnesium content of late sporulating cells is also lower than that for log-phase cells.  相似文献   

3.
beta-d-phosphogalactoside galactohydrolase (beta-PGal) was isolated and purified from cell-free extracts of Streptococcus cremoris HP to apparent homogeneity to gel electrophoresis. Using the chromogenic o-nitrophenol-beta-d-galactopyranoside-6-phosphate as substrate, the purified enzyme exhibited a specific activity of 18.71 U/mg of protein and K(m) and V(max) values of 5.88 x 10(-4) M and 23.8 mumol of o-nitrophenol liberated per min per mg of protein, respectively. d-Galactose-6-phosphate was a weak competitive inhibitor of beta-PGal. Activity was relatively heat resistant and was maximal from pH 5.0 to 8.0 and over a temperature range of 45 to 52 C. Dithiothreitol, ethylenediaminetetraacetic acid, and citrate stimulated beta-PGal activity, whereas Mg(2+), Li(1+), and p-hydroxymercuribenzoate were inhibitory. Molecular weight of the enzyme was estimated at 6.76 x 10(4). Amino acid composition was similar to other beta-phosphogalactosidases previously investigated, with the exception that the S. cremoris enzyme contains a small amount of half cystine.  相似文献   

4.
Cold-osmotic-shocked cells and spheroplasts of Saccharomyces cerevisiae (ATCC 9896) display a biotin uptake system similar to that observed in intact cells. 2-Mercaptoethanol was found to inhibit biotin transport. Cells repressed for biotin uptake by growth in excess biotin (25 ng/ml) possess an energy-dependent transport system that has a K(m) for biotin of 6.6 x 10(-7) M and a V(max) equal to 39 pmol per mg (dry weight) per min. A similar K(m) (6.4 x 10(-7) M) but a considerably higher V(max) (530 pmol per mg (dry weight) per min) was determined for biotin uptake by cells grown in sufficient biotin (0.25 ng/ml). The V(max) rates of biotin uptake by both repressed and derepressed cells were increased approximately 35-fold in the presence of glucose. These yeast cells appear to regulate their biotin uptake by two mechanisms. An exit system provides for immediate adjustments, whereas turnover of the transport system and repression of new synthesis establishes a slower adaptation to changes in the environment. Feedback inhibition was ruled out as a mechanism of regulation of transport.  相似文献   

5.
Washed membranes of bovine adrenal chromaffin granules contained most of the cholesterol and phospholipids of the particle and 22% of the total protein. The protein/lipid ratio was about 0.45 (w/w). Dopamine(3,4-dihydroxyphenethylamine)beta-hydroxylase, Mg(2+)-activated nucleoside triphosphatase and cytochrome b-559 activities were present in the membrane. ATP was the best substrate for the nucleoside triphosphatase, whose pH optimum was 6.4, K(m) 7x10(-4)m and V(max.) 1.8mumol/h per mg of protein. Treatment of the membranes with various detergents caused a preferential solubilization of protein compared with lipids. Membranes dissolved in sodium dodecyl sulphate or phenol-acetic acid-urea were subjected to polyacrylamide-gel electrophoresis at alkaline and acid pH respectively. The electrophoretic patterns given by the proteins of the chromaffin granule membrane were distinct from those given by the chromogranins, and from those given by mitochondrial and microsomal membrane proteins.  相似文献   

6.
The effect of temperature (between 5.0 and 45.0 degrees C) on the catalytic activity of nitric oxide synthases types I, II, and III (NOS-I, NOS-II, and NOS-III, respectively) has been investigated, at pH 7.5. The value of V(max) for NOS-I activity increases from 1.8 x 10(1) pmol min(-1) mg(-1), at 5.0 degrees C, to 1.8 x 10(2) pmol min(-1) mg(-1), at 45.0 degrees C; on the other hand, the value of K(m) (=4.0 x 10(-6) M) is temperature independent. Again, the value of V(max) for NOS-II activity increases from 8.0 pmol min(-1) mg(-1), at 7.0 degrees C, to 5.4 x 10(1) pmol min(-1) mg(-1), at 40.0 degrees C, the value of K(m) (=1.8 x 10(-5) M) being unaffected by temperature. Temperature exerts the same effect on NOS-I and NOS-II activity, as shown by the same values of DeltaH(V(max)) (=4.2 x 10(1) kJ mol(-1)), DeltaH(K(m)) (=0 kJ mol(-1)), and DeltaH((V(max))(/K(m))()) (=4.2 x 10(1) kJ mol(-1)). On the contrary, the value of K(m) for NOS-III activity decreases from 3.8 x 10(-5) M, at 10.0 degrees C, to 1.6 x 10(-5) M, at 40.0 degrees C, the value of V(max) (=6.8 x 10(1) pmol min(-1) mg(-1)) being temperature independent. Present results indicate that temperature influences directly NOS-I and NOS-II activity independently of the substrate concentration, the values of K(m) being temperature independent. However, when l-arginine level is higher than 2 x 10(-4) M, as observed under in vivo conditions, NOS-III activity is essentially unaffected by temperature, the substrate concentration exceeding the value of K(m). As a whole, although further studies in vivo are needed, these observations seem to have potential physiopathologic implications.  相似文献   

7.
Nichols DJ  Keeling PL  Spalding M  Guan H 《Biochemistry》2000,39(26):7820-7825
Chemical modification of maize starch synthase IIb-2 (SSIIb-2) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), which modifies acidic amino acid residues, resulted in a time- and concentration-dependent inactivation of SSIIb-2. ADPGlc was found to completely protect SSIIb-2 from inactivation by EDAC. These results suggest that glutamate or aspartate is important for SS activity. On the basis of the sequence identity of SS, conserved acidic amino acids were mutagenized to identify the specific amino acid residues important for SS activity. Three amino acids (D21, D139, and E391) were found to be important for SS activity. D21N showed 4% of the wild-type enzyme activity and a 10-fold decrease in the affinity for ADPGlc, while the conservative change from D21 to E resulted in a decrease in V(max) and no change in affinity for ADPGlc, suggesting that the negative charge is important for ADPGlc binding. When sites D139 and E391 were changed to their respective amide form, no SS activity was detected. With the conservative change, D139E showed a decrease in V(max) and no changes in apparent K(m) for substrates. E391D showed a 9-fold increase in K(m) for ADPGlc, a 12-fold increase in apparent K(m) for glycogen, and a 4-fold increase in apparent K(m) for amylopectin. The circular dichroism analysis indicates that these kinetic changes may not be due to a major conformation change in the protein. These results provide the first evidence that the conserved aspartate and glutamate residues could be involved in the catalysis or substrate binding of SS.  相似文献   

8.
The gene coding for glutathione S-transferase (GST) has been isolated from the Mytilus edulis hepatopancreas. Open reading frame analysis indicated that the M. edulis GST (meGST) gene encodes a protein of 206 amino acid residues with a calculated molecular mass of 23.68 kDa. The deduced amino acid sequence showed high sequence similarity with the sequence of the pi class GST. The meGST was expressed in Escherichia coli, and the recombinant meGST was purified by affinity chromatography and characterized. The recombinant meGST exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). Kinetic analysis with respect to CDNB as substrate gave a K(m) of 0.68 mM and a V(max) of 0.10 mmol/min per mg protein. The recombinant meGST had a maximum activity at approximately pH 8.5, and its optimum temperature was 39 degrees C. The predicted three-dimensional structure of the meGST revealed the N-terminal domain possesses a thioredoxin fold and the six helices of the C-terminal domain make a alpha-helical bundle. These features indicate that the meGST belongs to pi class GST.  相似文献   

9.
Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two K(m) values for lysine. System I (K(m) approximately 5 x 10(-6) molar; V(max) approximately 180 nanomoles per gram fresh weight per hour) and system II (K(m) approximately 10(-4) molar; V(max) approximately 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for K(i) similar to the respective K(m) values.These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells.  相似文献   

10.
Lactose-Hydrolyzing Enzymes of Lactobacillus Species   总被引:9,自引:5,他引:4       下载免费PDF全文
beta-Galactosidase (beta-gal, EC 3.2.1.23) and beta-D-phosphogalactoside galactohydrolase (beta-Pgal) activities were observed in all of 13 Lactobacillus species studied except L. casei and L. buchneri. Only the latter enzyme was detected in nine strains of L. casei. The beta-gal from L. thermophilus and the beta-Pgal from L. casei were purified and characterized. In comparison with beta-gal, the beta-Pal was slightly less active (V(max) values were 28.9 and 50.0 mumoles per mg per min, respectively), but the substrate affinitives were similar (K(m) values were 1.69 x 10(-3) M and 1.59 x 10(-3) M, respectively). Although the two enzymes had similar amino acid compositions, the molecular weight of beta-gal was 5.4 x 10(5) and that of beta-Pgal was 1.3 x 10(5). The beta-gal from L. thermophilus and the beta-Pgal from L. casei had optimal temperature and pH activity values of 55 C at pH 6.2 and 37 C at pH 5.0, respectively. The complete absence of beta-gal from a homofermentative Lactobacillus species of industrial importance is further evidence of the heterogeneity of this genus.  相似文献   

11.
Acylpeptide hydrolase was purified to homogeneity from porcine intestinal mucosa using a seven-step procedure including ammonium sulfate precipitation, gel filtration as well as anion exchange and affinity chromatography. The specific activity of the enzyme reached 105000 nmol/mg protein per min and the purification was as high as 5500-fold. This tetrameric enzyme is composed of four apparently identical subunits, the molecular mass of which was estimated to be 75 kDa, based on the results of amino acid analysis and gel electrophoresis performed under denaturing conditions. It is likely that the NH(2)-terminal residue may be acetylated, while serine was found to be the COOH-terminal residue. The hydrolytic activity of the enzyme toward N-acetyl-L-alanine p-nitroanilide at the optimum pH value was increased twofold in the presence of the chloride anion. The K(m) value calculated from the kinetics of the hydrolysis of acetylalanyl peptides was found to be 0.7+/-0.1 mM, whereas the V(max) values decreased from 200 to 50 nmol/min per microgram of enzyme, depending on the peptidic chain lengths. The V(max) value of the synthetic substrate (250 nmol/min per microgram of enzyme) was 25-500% higher than those of the acetylalanyl peptides, depending on the peptide chain length, although the enzyme affinity was slightly lower (1.8 mM as compared with 0.7 mM). In line with data on other animal species and on various tissues, the enzyme seemed likely to be a serine protease, since it was readily inhibited by diisopropyl fluorophosphate and diethyl pyrocarbonate. A 2377-nucleotide long cDNA coding for the enzyme was isolated from pig small intestine. The deduced amino acid sequence consisted of 731 residues and showed a single different amino acid with that of the porcine liver APH, except the N-terminal amino acid which is still probably lacking.  相似文献   

12.
A system of H(3)-amethopterin uptake, physiologically and kinetically resembling active transport, has been described in Diplococcus pneumoniae. Uptake by this system has a pH optimum near 6.0, is temperature-dependent, requires a readily available source of energy, and conforms to Michaelis-Menten kinetics. The system showed a K(m) of 0.9 x 10(-6)m and a V(max) of 1.9 x 10(-13) moles per min per mg (dry weight). Both folate and H(2)-folate compete with H(3)-amethopterin for the same system, but to a limited degree. The intracellular concentration of H(3)-amethopterin accumulated at equilibrium was 1.06 x 10(-9) moles/ml or fivefold the external concentration when the latter was limiting, but at least 60-fold the internal concentration attained solely by diffusion in the same time interval at 0 C.  相似文献   

13.
The transport pathways for dibasic amino acids were investigated in brush border membrane vesicles (BBMV) from the anterior-middle (AM) and posterior (P) regions of Bombyx mori midgut. In the absence of K(+), a low-affinity saturable transport of arginine in both AM- and P-BBMV (K(m) 1.01 mM, V(max) 4.07 nmol/7s/mg protein and K(m) 1.38 mM, V(max) 2.26 nmol/7s/mg protein, respectively) was detected. Arginine influx was dependent on the membrane electrical potential (Deltapsi) and increased raising the alkalinity of the external medium from pH 7.2 to 10.6. Competition experiments indicated the following order of substrate affinity: arginine, homoarginine, N(G)-monomethylarginine, N(G)-nitroarginine>lysine>ornithine>cysteine>methionine. Leucine, valine and BCH (2-amino-2-norbornanecarboxylic acid) did not inhibit arginine influx. In the presence of external K(+), the influx of arginine as a function of arginine concentration fitted to a complex saturation kinetics compatible with both a low-affinity and a high-affinity component. The latter (K(m) 0.035 mM, V(max) 2.54 nmol/7s/mg protein) was fully characterized. The influx rate had an optimum at pH 8.8, was strongly affected by Deltapsi and was homogeneous along the midgut. The substrate affinity rank was: homoarginine>arginine, N(G)-monomethylarginine>cysteine, lysine>N(G)-nitroarginine>ornithine>methionine. Leucine and amino acids with a hydrophobic side chain were not accepted. This system is also operative in the absence of potassium, with the same order of specificity but a very low activity. Lysine influx is mediated by two more transport systems, the leucine uniport and the K(+)/leucine symport specific for amino acids with a hydrophobic side chain that recognizes lysine at extravesicular pH values (pH(out)) exceeding 9. Both the uniport and the symport differ from the cationic transport systems so far identified in mammals because they are unaffected by N-ethylmaleimide, have no significant affinity for neutral amino acids in the presence of the cation and show a striking difference in their optimum pH.  相似文献   

14.
In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue of Saccharomyces cerevisiae GABA aminotransferase, and SkPYD4 encodes an enzyme involved in both BAL and GABA transamination. SkPYD4 and SkUGA1 as well as S. cerevisiae UGA1 and Schizosaccharomyces pombe UGA1 were subcloned, over-expressed and purified. One discontinuous and two continuous coupled assays were used to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V(max)/K(m)=0.78 U x mg(-1) x mm(-1)), but can also use GABA (V(max)/K(m)=0.42 U x mg(-1) x mm(-1)), while SkUga1p only uses GABA (V(max)/K(m)=4.01 U x mg(-1) x mm(-1)). SpUga1p and ScUga1p transaminate only GABA and not BAL. While mammals degrade BAL and GABA with only one enzyme, but in different tissues, S. kluyveri and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication approximately 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.  相似文献   

15.
In osmoregulating teleost fish, urea is a minor nitrogen excretory product, whereas in osmoconforming marine elasmobranchs it serves as the major tissue organic solute and is retained at relatively high concentrations ( approximately 400 mmol/l). We tested the hypothesis that urea transport across liver mitochondria is carrier mediated in both teleost and elasmobranch fishes. Intact liver mitochondria in rainbow trout (Oncorhynchus mykiss) demonstrated two components of urea uptake, a linear component at high concentrations and a phloretin-sensitive saturable component [Michaelis constant (K(m)) = 0.58 mmol/l; maximal velocity (V(max)) = 0.12 mumol.h(-1).mg protein(-1)] at lower urea concentrations (<5 mmol/l). Similarly, analysis of urea uptake in mitochondria from the little skate (Raja erinacea) revealed a phloretin-sensitive saturable transport (K(m) = 0.34 mmol/l; V(max) = 0.054 mumol.h(-1).mg protein(-1)) at low urea concentrations (<5 mmol/l). Surprisingly, urea transport in skate, but not trout, was sensitive to a variety of classic ionophores and respiration inhibitors, suggesting cation sensitivity. Hence, urea transport was measured in the reverse direction using submitochondrial particles in skate. Transport kinetics, inhibitor response, and pH sensitivity were very similar in skate submitochondrial particle submitochondrial particles (K(m) = 0.65 mmol/l, V(max) = 0.058 mumol.h(-1).mg protein(-1)) relative to intact mitochondria. We conclude that urea influx and efflux in skate mitochondria is dependent, in part, on a bidirectional proton-sensitive mechanism similar to bacterial urea transporters and reminiscent of their ancestral origins. Rapid equilibration of urea across the mitochondrial membrane may be vital for cell osmoregulation (elasmobranch) or nitrogen waste excretion (teleost).  相似文献   

16.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

17.
Catalytic behavior of Pseudomonas cepacia lipase in w/o microemulsions   总被引:3,自引:0,他引:3  
The activity of purified Pseudomonas cepacia lipase has been investigated in esterification reactions of various aliphatic alcohols with natural fatty acids. The reactions were carried out in microemulsions formed in isooctane by bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT). Kinetic studies showed that the reaction follows a ping-pong bi-bi mechanism with inhibition by both substrates. The apparent kinetic parameters of the reaction were found to be K(m octanol) = 310 mM, K(m lauric acid) = 78 mM, and V(max) = 250 mumol min(-1) mg(-1). The same system was used for the synthesis of mono- and diglycerides from glycerol and lauric acid, which was successful at very low w(o) values. The catalytic behavior of P. cepacia lipase was also studied in esterification reactions performed in a nonionic microemulsion system formulated by tetraethyleneglycoldodecylether (C(12)E(4)). The optimum activity was found at about w(o) = 8. The apparent values of V(max app) and K(m app) for octanol were calculated and found to be 100 mumol min(-1) mg(-1) and 76 mM, respectively. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
20-HETE is a potent, vasoconstrictive arachidonic acid metabolite with a limited number of published methods for quantitative assessment of microsomal formation rate. The purpose of this study was to evaluate the utility of HPLC-MS (negative ESI) for quantitation of rat microsomal 20-HETE enzyme kinetics. Calibration curves were linear over 0.75-16 ng on-column (r(2)>0.996). The intra- and inter-assay precision and accuracy were <15%. Microsomal 20-HETE revealed saturable (100 microM) kinetics (brain K(m) and V(max): 39.9+/-6.0 microM and 8.7+/-0.6 pM/min per mg; liver K(m) and V(max): 23.5+/-3.2 microM and 775.5+/-39.8 pmol/min per mg; kidney K(m) and V(max): 47.6+/-8.5 microM and 1933+/-151 pM/min per mg). This paper demonstrates HPLC-MS as an efficient method for quantitating 20-HETE enzyme kinetics in microsomes from rat tissues.  相似文献   

19.
An enzyme that has both beta-1,4-glucanase and chitosanase activities is characterized. Evidence for homogeneity was obtained from electrophoresis and sedimentation velocity studies; only one N-terminal amino acid, valine, was found. Results of denaturation studies showed that beta-1,4-glucanase and chitosanase activities decreased at equal rates. With carboxymethylcellulose as the substrate, a K(m) of 1.68 g of carboxymethylcellulose per liter of solution and a V(max) of 2.20 x 10(-9) mol/min were found. With chitosan (the beta-1,4-polymer of glucosamine) as the substrate, a K(m) of 0.30 g of chitosan per liter of solution and a V(max) of 0.75 x 10(-9) mol/min were found. A pH optimum of 5.0 was found for beta-1,4-glucanase activity, and pH optima of 5.0 and 6.8 were found for chitosanase activity. beta-1,4-Glucanase activity had a temperature optimum of 38 C, and chitosanase activity had a temperature optimum of 70 C. Chitosan stabilized both enzyme activities at 70 C. Cellotriose was the smallest polymer capable of hydrolysis. Glucosamine was released by action of the enzyme upon cell wall preparations of several fungi.  相似文献   

20.
11 Beta-hydroxysteroid dehydrogenases type 1 and 2 (11 beta-HSD1 and 11 beta-HSD2) are microsomal enzymes responsible for the interconversion of cortisol into the inactive form cortisone and vice versa. 11 beta-HSD1 is mainly present in the liver, and has predominantly reductase activity although its function has not yet been elucidated. 11 beta-HSD2, present in mineralocorticoid target tissues such as the kidney, converts cortisol into cortisone. Reduced activity due to inhibition or mutations of 11 beta-HSD2 leads to hypertension and hypokalemia resulting in the Apparent Mineralocorticoid Excess Syndrome (AMES). Like humans, cats are highly susceptible for hypertension. As large species differences exist with respect to the kinetic parameters (K(m) and V(max)) and amino acid sequences of both enzymes, we determined these characteristics in the cat. Both enzyme types were found in the kidneys. 11 beta-HSD1 in the feline kidney showed bidirectional activity with predominantly dehydrogenase activity (dehydrogenase: K(m) 1959+/-797 nM, V(max) 766+/-88 pmol/mg*min; reductase: K(m) 778+/-136 nM, V(max) 112+/-4 pmol/mg*min). 11 beta-HSD2 represents a unidirectional dehydrogenase with a higher substrate affinity (K(m) 184+/-24 nM, V(max) 74+/-3 pmol/mg*min). In the liver, only 11 beta-HSD1 is detected exerting reductase activity (K(m) 10462 nM, V(max) 840 pmol/mg*min). Sequence analysis of conserved parts of 11 beta-HSD1 and 11 beta-HSD2 revealed the highest homology of the feline enzymes with the correspondent enzymes found in man. This suggests that the cat may serve as a suitable model species for studies directed to the pathogenesis and treatment of human diseases like AMES and hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号