首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative sequencing of Pseudomonas aeruginosa genes oriC, citS, ampC, oprI, fliC, and pilA in 19 environmental and clinical isolates revealed the sequence diversity to be about 1 order of magnitude lower than in comparable housekeeping genes of Salmonella. In contrast to the low nucleotide substitution rate, the frequency of recombination among different P. aeruginosa genotypes was high, leading to the random association of alleles. The P. aeruginosa population consists of equivalent genotypes that form a net-like population structure. However, each genotype represents a cluster of closely related strains which retain their sequence signature in the conserved gene pool and carry a set of genotype-specific DNA blocks. The codon adaptation index, a quantitative measure of synonymous codon bias of genes, was found to be consistently high in the P. aeruginosa genome irrespective of the metabolic category and the abundance of the encoded gene product. Such uniformly high codon adaptation indices of 0.55 to 0.85 fit the ubiquitous lifestyle of P. aeruginosa.  相似文献   

2.
To study the role of type III-secreted effectors in the host adaptation of the tobacco ( Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci , a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean ( Phaseolus vulgaris ) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1 Pph1448A were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species.  相似文献   

3.
The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.  相似文献   

4.
The conservation of the oprF gene for the major outer membrane protein OprF was determined by restriction mapping and Southern blot hybridization with the Pseudomonas aeruginosa oprF gene as a probe. The restriction map was highly conserved among 16 of the 17 serotype strains and 42 clinical isolates of P. aeruginosa. Only the serotype 12 isolate and one clinical isolate showed small differences in restriction pattern. Southern probing of PstI chromosomal digests of 14 species from the family Pseudomonadaceae revealed that only the nine members of rRNA homology group I hybridized with the oprF gene. To reveal the actual extent of homology, the oprF gene and its product were characterized in Pseudomonas syringae. Nine strains of P. syringae from seven different pathovars hybridized with the P. aeruginosa gene to produce five different but related restriction maps. All produced an OprF protein in their outer membranes with the same apparent molecular weight as that of P.aeruginosa OprF. In each case the protein reacted with monoclonal antibody MA4-10 and was similarly heat and 2-mercaptoethanol modifiable. The purified OprF protein of the type strain P. syringae pv. syringae ATCC 19310 reconstituted small channels in lipid bilayer membranes. The oprF gene from this latter strain was cloned and sequenced. Despite the low level of DNA hybridization between P. aeruginosa and P. syringae DNA, the OprF gene was highly conserved between the species with 72% DNA sequence identity and 68% amino acid sequence identity overall. The carboxy terminus-encoding region of P. syringae oprF showed 85 and 33% identity, respectively, with the same regions of the P. aeruginosa oprF and Escherichia coli ompA genes.  相似文献   

5.
The first wave of Pseudomonas syringae next-generation genomic studies has revealed insights into host-specific virulence and immunity, genome dynamics and evolution, and genetic and metabolic specialization. These studies have further enhanced our understanding of type III effector diversity, identified an atypical type III secretion system (T3SS) in a new clade of nonpathogenic P. syringae, identified metabolic pathways common to pathogens of woody hosts and revealed extensive genomic diversity among strains that infect common hosts. In general, these discoveries have illustrated the utility of draft genome sequencing for quickly and economically identifying candidate loci for more refined genetic and functional analyses.  相似文献   

6.
Aims:  To design and evaluate a loop-mediated isothermal amplification (LAMP) protocol by combining comparative genomics and bioinformatics for characterization of Pseudomonas syringae pv. phaseolicola (PSP), the causal agent of halo blight disease of bean ( Phaseolus vulgaris L.).
Methods and Results:  Genomic sequences of Pseudomonas syringae pathovars, P. fluorescens and P. aeruginosa were analysed using multiple sequence alignment. A pathovar-specific region encoding pathogenicity-related secondary metabolites in the PSP genome was targeted for developing a LAMP assay. The final assay targeted a polyketide synthase gene, and readily differentiated PSP strains from other Pseudomonas syringae pathovars and other Pseudomonas species, as well as other plant pathogenic bacteria, e.g. species of Pectobacterium , Erwinia and Pantoea .
Conclusion:  A LAMP assay has been developed for rapid and specific characterization and identification of PSP from other pathovars of P. syringae and other plant-associated bacteria .
Significance and Impact of the Study:  This paper describes an approach combining a bioinformatic data mining strategy and comparative genomics with the LAMP technology for characterization and identification of a plant pathogenic bacterium. The LAMP assay could serve as a rapid protocol for microbial identification and detection with significant applications in agriculture and environmental sciences.  相似文献   

7.
A combined phylogenetic and multilocus DNA sequence analysis of 26 Pseudomonas stutzeri strains distributed within the 9 genomovars of the species has been performed. Type strains of the two most closely related species (P. balearica, former genomovar 6, and P. mendocina), together with P. aeruginosa, as the type species of the genus, have been included in the study. The extremely high genetic diversity and the clonal structure of the species were confirmed by the sequence analysis. Clustering of strains in the consensus phylogeny inferred from the analysis of seven nucleotide sequences (16S ribosomal DNA, internally transcribed spacer region 1, gyrB, rpoD, nosZ, catA, and nahH) confirmed the monophyletic origin of the genomovars within the Pseudomonas branch and is in good agreement with earlier DNA-DNA similarity analysis, indicating that the selected genes are representative of the whole genome in members of the species.  相似文献   

8.
The gene coding for GDP-mannose dehydrogenase ( algD ) was isolated from a Pseudomonas syringae pv. phaseolicola genomic library using a polymerase chain reaction-generated heterologous DNA-probe from Pseudomonas aeruginosa . A total of 2123 base pairs were sequenced (accession number AF001555) and analysed for homologies to the alginate gene cluster of P. aeruginosa . Downstream from algD an alg8 homologue was found suggesting a similar arrangement of the alginate gene cluster in P. syringae pv. phaseolicola to that in P. aeruginosa . Also, the deduced amino acid sequence of algD shows high similarity to that of P. aeruginosa (0.9) and Azotobacter vinelandii (0.88). Southern hybridization experiments revealed that algD is widely distributed among members of the Pseudomonas rRNA homology group I. Among others, sequences homologous to algD were detected in the P. syringae pathovars lachrymans , mori , morsprunorum, pisi , savastanoi, tabaci and tomato as well as in Pseudomonas amygdali . For most of the algD positive organisms synthesis of alginate has been reported by other studies. However, algD homologues were also detected for the species Pseudomonas corrugata , Pseudomonas marginalis and Pseudomonas avenae ( Acidovorax avenae ), for which alginate biosynthesis has not yet been reported.  相似文献   

9.
10.
Many species of pseudomonads produce fluorescent siderophores involved in iron uptake. We have investigated the DNA homology between the siderophore synthesis genes of an opportunist animal pathogen, Pseudomonas aeruginosa, and three plant-associated species Pseudomonas syringae, Pseudomonas putida and Pseudomonas sp. B10. There is extensive homology between the DNA from the different species, consistent with the suggestion that the different siderophore synthesis genes have evolved from the same ancestral set of genes. The existence of DNA homology allowed us to clone some of the siderophore synthesis genes from P. aeruginosa, and genetic mapping indicates that the cloned DNA lies in a locus previously identified as being involved in siderophore production.  相似文献   

11.
Systematic comparison of the current repertoire of virulence-associated genes for three Pseudomonas syringae strains with complete genome sequences, P. syringae pv. tomato DC3,000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a, is prompted by recent advances in virulence factor identification in P. syringae and other bacteria. Among these are genes linked to epiphytic fitness, plant- and insect-active toxins, secretion pathways, and virulence regulators, all reflected in the recently updated DC3,000 genome annotation. Distribution of virulence genes in relation to P. syringae genome organization was analyzed to distinguish patterns of conservation among genomes and association between genes and mobile genetic elements. Variable regions were identified on the basis of deviation in sequence composition and gaps in syntenic alignment among the three genomes. Mapping gene location relative to the genome structure revealed strong segregation of the HrpL regulon with variable genome regions (VR), divergent distribution patterns for toxin genes depending on association with plant or insect pathogenesis, and patterns of distribution for other virulence genes that highlight potential sources of strain-to-strain differences in host interaction. Distribution of VR among other sequenced bacterial genomes was analyzed and future plans for characterization of this potential reservoir of virulence genes are discussed.  相似文献   

12.
Plant-associated pseudomonads are commonly exposed to copper bactericides, which are applied to reduce the disease incidence caused by these bacteria. Consequently, many of these bacteria have acquired resistance or tolerance to copper salts. We recently conducted a survey of 37 copper-resistant (Cur) Pseudomonas spp., including P. cepacia, P. fluorescens, P. syringae, and P. viridiflava, and found that a subset of the P. syringae strains showed a dramatic increase in exopolysaccharide (EPS) production on mannitol-glutamate medium containing CuSO4 at 250 micrograms/ml. A modified carbazole assay indicated that the EPS produced on copper-amended media contained high levels of uronic acids, suggesting that the EPS was primarily alginic acid. Uronic acids extracted from selected strains were further confirmed to be alginate by demonstrating their sensitivity to alginate lyase and by descending paper chromatography following acid hydrolysis. Subinhibitory levels of arsenate, cobalt, lithium, rubidium, molybdenum, and mercury did not induce EPS production, indicating that alginate biosynthesis is not induced in P. syringae cells exposed to these heavy metals. A 200-kb plasmid designated pPSR12 conferred a stably mucoid phenotype to several P. syringae recipients and also increased their resistance to cobalt and arsenate. A cosmid clone constructed from pPSR12 which conferred a stably mucoid phenotype to several P. syringae strains but not to Pseudomonas aeruginosa was obtained. Results obtained in this study indicate that some of the signals and regulatory genes for alginate production in P. syringae differ from those described for alginate production in P. aeruginosa.  相似文献   

13.
Sarkar SF  Gordon JS  Martin GB  Guttman DS 《Genetics》2006,174(2):1041-1056
While much study has gone into characterizing virulence factors that play a general role in disease, less work has been directed at identifying pathogen factors that act in a host-specific manner. Understanding these factors will help reveal the variety of mechanisms used by pathogens to suppress or avoid host defenses. We identified candidate Pseudomonas syringae host-specific virulence genes by searching for genes whose distribution among natural P. syringae isolates was statistically associated with hosts of isolation. We analyzed 91 strains isolated from 39 plant hosts by DNA microarray-based comparative genomic hybridization against an array containing 353 virulence-associated (VA) genes, including 53 type III secretion system effectors (T3SEs). We identified individual genes and gene profiles that were significantly associated with strains isolated from cauliflower, Chinese cabbage, soybean, rice, and tomato. We also identified specific horizontal gene acquisition events associated with host shifts by mapping the array data onto the core genome phylogeny of the species. This study provides the largest suite of candidate host-specificity factors from any pathogen, suggests that there are multiple ways in which P. syringae isolates can adapt to the same host, and provides insight into the evolutionary mechanisms underlying host adaptation.  相似文献   

14.
The factors limiting the habitat range of species are crucial in understanding their biodiversity and response to environmental change. Yet the genetic and genomic architectures that produce genetic variation to enable environmental adaptation have remained poorly understood. Here we show that the proportion of duplicated genes (P(D)) in the whole genomes of fully sequenced Drosophila species is significantly correlated with environmental variability within the habitats measured by the climatic envelope and habitat diversity. Furthermore, species with a low P(D) tend to lose the duplicated genes owing to their faster evolution. These results indicate that the rapid relaxation of functional constraints on duplicated genes resulted in a low P(D) for species with lower habitat diversity, and suggest that the maintenance of duplicated genes gives organisms an ecological advantage during evolution. We therefore propose that the P(D) in a genome is related to adaptation to environmental variation.  相似文献   

15.
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.  相似文献   

16.
17.
The pPT23A plasmid family of Pseudomonas syringae contains members that contribute to the ecological and pathogenic fitness of their P. syringae hosts. In an effort to understand the evolution of these plasmids and their hosts, we undertook a comparative analysis of the phylogeny of plasmid genes and that of conserved chromosomal genes from P. syringae. In total, comparative sequence and phylogenetic analyses were done utilizing 47 pPT23A family plasmids (PFPs) from 16 pathovars belonging to six genomospecies. Our results showed that the plasmid replication gene (repA), the only gene currently known to be distributed among all the PFPs, had a phylogeny that was distinct from that of the P. syringae hosts of these plasmids and from those of other individual genes on PFPs. The phylogenies of two housekeeping chromosomal genes, those for DNA gyrase B subunit (gyrB) and primary sigma factor (rpoD), however, were strongly associated with genomospecies of P. syringae. Based on the results from this study, we conclude that the pPT23A plasmid family represents a dynamic genome that is mobile among P. syringae pathovars.  相似文献   

18.
A total of 137 soilborne and plant-associated bacterial strains belonging to different Pseudomonas species were tested for their ability to synthesize N-acyl-homoserine lactones (NAHL). Fifty-four strains synthesized NAHL. Interestingly, NAHL production appears to be more common among plant-associated than among soilborne Pseudomonas spp. Indeed, 40% of the analyzed Pseudomonas syringae strains produced NAHL which were identified most often as the short-chain NAHL, N-hexanoyl-L-homoserine lactone, N-(3-oxo-hexanoyl)-homoserine lactone, and N-(3-oxo-octanoyl)-L-homoserine lactone (no absolute correlation between genomospecies of P. syringae and their ability to produce NAHL could be found). Six strains of fluorescent pseudomonads, belonging to the species P. chlororaphis, P. fluorescens, and P. putida, isolated from the plant rhizosphere produced different types of NAHL. In contrast, none of the strains isolated from soil samples were shown to produce NAHL. The gene encoding the NAHL synthase in P. syringae pv. maculicola was isolated by complementation of an NAHL-deficient Chromobacterium mutant. Sequence analysis revealed the existence of a luxI homologue that we named psmI. This gene is sufficient to confer NAHL synthesis upon its bacterial host and has strong homology to psyI and ahlI, two genes involved in NAHL production in P. syringae pv. tabaci and P. syringae pv. syringae, respectively. We identified another open reading frame that we termed psmR, transcribed convergently in relation to psmI and partly overlapping psmI; this gene encodes a putative LuxR regulatory protein. This gene organization, with luxI and luxR homologues facing each other and overlapping, has been found so far only in the enteric bacteria Erwinia and Pantoea and in the related species P. syringae pv. tabaci.  相似文献   

19.
Members of the genus Pseudomonas (sensu stricto) are important phytopathogens and agents of human infections, while other strains and species have beneficial bioremediation and biocontrol activities. Traditionally, these important species have been difficult to differentiate phenotypically; thus, rRNA lineage analyses have often been invoked. In this report, a newly developed approach is described to rapidly detect and distinguish fluorescent Pseudomonas isolates: PCR amplification of a Pseudomonas-specific 990-bp ribosomal RNA gene (rDNA) fragment [Appl. Environ. Microbiol. 64 (1998) 2545.] coupled with multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of AluI, HinfI, RsaI, and Tru9I incubated at 37 degrees C. The method distinguished 116 published sequences and 47 reference strains of authentic Pseudomonas representing 28 nomenspecies. A total of 55% (64/116) of the sequences analyzed by MERFLP were grouped into distinct phylogenetic clusters including Pseudomonas putida, P. syringae, P. aeruginosa, P. stutzeri, and P. fluorescens. The utility of the MERFLPs was confirmed when 100% (33/33) of the above named control reference strains were correctly placed into their phylogenetic clusters. The environmental relevance of the MERFLP method was confirmed when 67% of 28 forest and agricultural soil-derived presumptive Pseudomonas environmental clones and isolates were placed into the five major pseudomonad clusters, one clone fell into the P. agarici cluster, and five clones clustered near related pseudomonads. These data demonstrated that the PCR-MERFLP protocol provides an efficient and powerful tool for distinguishing isolates and rDNA gene libraries of environmental Pseudomonas species.  相似文献   

20.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号