首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have investigated the effects of low (10 mg/kg) and high (100 mg/kg) doses of L-DOPA on the expression and activity of neuronal nitric oxide synthase (nNOS) and guanylyl cyclase (GC) in the striatum and midbrain of mice. L-DOPA was administered subchronically for 11 days (beginning 3 days after last MPTP/NaCl injection) or for 14 days (with dosing started immediately following the last MPTP/NaCl injection). Adult mice received three intraperitoneal (i.p.) injections of physiological saline or MPTP at 2h intervals (total dose of 40 mg/kg). Normal and MPTP-injected mice were treated twice a day for 11 or 14 days with low (10/2.5 mg/kg bw) or high (100/25mg/kg bw) doses of L-DOPA/benserazide. The present study indicates that several days of treatment with L-DOPA does not affect MPTP-activation of the nNOS/sGC/cGMP pathway or the neurodegenerative processes that occur in the striatum and midbrain of mice. In normal mice, L-DOPA upregulates the expression and activity of nNOS and GC to levels found in MPTP-injected mice. Due to upregulation of nNOS and GC, cGMP levels in the mouse striatum and midbrain are also elevated, however, significantly lower in mice administrated with low dose of L-DOPA. In both investigated brain regions of normal mice cGMP-dependent PDEs activities were elevated after low dose administration of L-DOPA, but no change in PDEs activities has been detected in MPTP and high L-DOPA-injected mice as compared to control values. The enhancement of nNOS mRNA and GCbeta1 mRNA levels were generated by both doses of L-DOPA, given in a time-dependent fashion. L-DOPA-injected for 11 or 14 days caused a decrease in TH protein levels in the striatum and midbrain, respectively; this result was noted irrespective of dose. L-DOPA therapy did not prevent the MPTP-induced decrease in TH protein levels in either investigated brain region.  相似文献   

2.
Curcumin is a natural antioxidant isolated from the medicinal plant Curcuma longa Linn. We previously reported that manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) exhibited potent superoxide dismutase (SOD)-like activity in an in vitro assay. Nitric oxide (NO) is a free radial playing a multifaceted role in the brain and its excessive production is known to induce neurotoxicity. Here, we examined the in vivo effect of Cp-Mn and DiAc-Cp-Mn on NO levels enhanced by kainic acid (KA) and L-arginine (L-Arg) in the hippocampi of awake rats using a microdialysis technique. Injection of KA (10 mg/kg, i.p.) and L-Arg (1000 mg/kg, i.p.) significantly increased the concentration of NO and Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly reversed the effects of KA and L-Arg without affecting the basal NO concentration. Following KA-induced seizures, severe neuronal cell damage was observed in the CA1 and CA3 subfields of hippocampal 3 days after KA administration. Pretreatment with Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly attenuated KA-induced neuronal cell death in both CA1 and CA3 regions of rat hippocampus compared with vehicle control, and Cp-Mn and DiAc-Cp-Mn showed more potent neuroprotective effect than their parent compounds, curcumin and diacetylcurcumin. These results suggest that Cp-Mn and DiAc-Cp-Mn protect against KA-induced neuronal cell death by suppression of KA-induced increase in NO levels probably by their NO scavenging activity and antioxidative activity. Cp-Mn and DiAc-Cp-Mn have an advantage to be neuroprotective agents in the treatment of acute brain pathologies associated with NO-induced neurotoxicity and oxidative stress-induced neuronal damage such as epilepsy, stroke and traumatic brain injury.  相似文献   

3.
Kim HC  Jhoo WK  Ko KH  Kim WK  Bing G  Kwon MS  Shin EJ  Suh JH  Lee YG  Lee DW 《Life sciences》2000,66(4):317-326
We examined the effects of cigarette smoke (CS) on three parameters associated with kainic acid (KA)-induced neurotoxicity: seizure activity, cell loss in the hippocampus, and increased Fos-related antigen (FRA) expression. Animals were exposed to the main stream of CS from 15 Kentucky 2R1F research cigarettes containing 28.6 mg tar and 1.74 mg nicotine per cigarette, for 10 min a day, 6 days per week, for 4 weeks, using an automatic smoking machine. KA administration (10 mg/kg, i.p.) produced robust behavioral convulsions lasting 4-5 h. Pre-exposure to CS significantly reduced the seizures, mortality, and severe loss of cells in regions CA1 and CA3 of the hippocampus after KA administration. Consistently, pre-exposure to CS significantly attenuated the KA-induced increased FRA immunoreactivity in the hippocampus. In contrast, pretreatment with central nicotinic antagonist, mecamylamine (2 or 10 mg/kg, i.p.) blocked the neuroprotective effects mediated by CS in a dose-dependent manner. These results indicate that CS exposure provides neuroprotection against the KA insult via nicotinic receptor activation.  相似文献   

4.
The objective of the present study was to determine whether magnesium sulfate has anticonvulsant actions in the hippocampal-kindled rat model of epilepsy. Fully kindled rats received acute intraperitoneal injections of magnesium sulfate (270 mg/kg), phenytoin (20 mg/kg) or saline in random order. Electrical seizure duration, behavioral seizure stage and duration of postictal EEG depression were examined 15, 30 and 60 min after injection. In an additional group of rats, kindled seizures were measured before and after chronic (2 h) intraperitoneal injections of magnesium sulfate versus saline. There was a significant decrease in electrical seizure duration (p<0.01) and behavioral seizure stage (p<0.01) with acute magnesium sulfate injections compared to saline injections. Phenytoin had no statistically significant effects on hippocampal-kindled seizures. Chronic magnesium sulfate treatment significantly reduced behavioral seizure stage at 2, 24, and 48 h postinjection (p<0.05), but did not affect seizure duration. There was a significant time by treatment effect for magnesium sulfate on postictal EEG depression (p<0.01). We conclude that in this model of hippocampal epilepsy-induced (kindled) rats, magnesium sulfate has significant anticonvulsant effects.  相似文献   

5.
The remote effects of neonatal (on the 3d-to-9th postnatal days) ketamine injections (10 and 50 mg/kg in 20 microliters of distilled water, s.c.) were analyzed in adult Wistar, WAG/Rij, and KM (a strain with high audiogenic sensitivity) rats. Both ketamine and water injections increased pain sensitivity in adult rats. Neonatally injected water increased the mean score of seizures in Wistar and WAG/Rij, whereas ketamine water solution injected in the dose of 50 mg/kg did not change the seizure intensity (as compared to the intact control). Consequently, ketamine significantly reduced the mean score of the audiogenic seizure fit without change in its latency. In highly sensitive KM rats the neonatally injected ketamine (50 mg/kg) significantly shortened the mean latency of the fit onset, and fit stages developed faster. Thus, the neonatal ketamine injection increased the audiogenic seizure susceptibility of brain structures in KM rats.  相似文献   

6.
Kainic acid (KA) induced epileptic seizures in mice is a commonly used experimental model of epilepsy. Previous studies have suggested the roles of various neurotransmitters and oxidative stress in KA-induced seizures. An important role of hypothyroidism has also been suggested in epilepsy. Thiamazole (TZ) is an anti-hyperthyroid drug with antioxidant property. This study reports the effect of TZ on KA-induced epileptic seizures in mice, produced by intraperitoneal (IP) injection of KA (18 mg/kg). Prior to KA injection, the animals were treated with TZ (12.5, 25 and 50 mg/kg IP). Our results showed that in KA alone group, about half of the animals developed seizures. Pre-treatment of mice with TZ significantly increased the frequency of seizures in dose-dependent manner. Administration of TZ significantly reduced the latency time and aggravated the severity of seizures. TZ also increased the mortality in KA-treated mice. Striatal dopamine and serotonin levels were markedly increased in KA alone treated mice, which were not significantly affected by TZ treatment. Among the indices of oxidative stress, we observed a significant reduction in cerebral vitamin E whereas the levels of cerebral malondialdehyde and conjugated dienes were significantly increased in animals with high severity of seizures. In conclusion, TZ potentiated the frequency and severity of experimental seizure in mice. There is a possibility of altered metabolism of KA in presence of TZ that might have potentiated the toxicity of KA. These findings suggest a caution while administering anti-hyperthyroid drugs in epileptic seizures.  相似文献   

7.
Although the role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in neuronal excitability and synaptic transmission is still unclear, it is postulated that the HCN channels may be involved in seizure activity. The aim of this study was to assess the effects of ivabradine (an HCN channel inhibitor) on the protective action of four classical antiepileptic drugs (carbamazepine, phenobarbital, phenytoin and valproate) against maximal electroshock-induced seizures in mice. Tonic seizures (maximal electroconvulsions) were evoked in adult male albino Swiss mice by an electric current (sine-wave, 25 mA, 0.2 s stimulus duration) delivered via auricular electrodes. Acute adverse-effect profiles of the combinations of ivabradine with classical antiepileptic drugs were measured in mice along with total brain antiepileptic drug concentrations. Results indicate that ivabradine (10 mg/kg, i.p.) significantly enhanced the anticonvulsant activity of valproate and considerably reduced that of phenytoin in the mouse maximal electroshock-induced seizure model. Ivabradine (10 mg/kg) had no impact on the anticonvulsant potency of carbamazepine and phenobarbital in the maximal electroshock-induced seizure test in mice. Ivabradine (10 mg/kg) significantly diminished total brain concentration of phenytoin and had no effect on total brain valproate concentration in mice. In conclusion, the enhanced anticonvulsant action of valproate by ivabradine in the mouse maximal electroshock-induced seizure model was pharmacodynamic in nature. A special attention is required when combining ivabradine with phenytoin due to a pharmacokinetic interaction and reduction of the anticonvulsant action of phenytoin in mice. The combinations of ivabradine with carbamazepine and phenobarbital were neutral from a preclinical viewpoint.  相似文献   

8.
We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.  相似文献   

9.
《Phytomedicine》2015,22(1):86-93
Decoctions of Ficus plathyphylla are used in Nigeria's folk medicine to manage epilepsy for many years and their efficacies are widely acclaimed among the rural communities of Northern Nigeria. In this study, we examined the ameliorative effects of the standardized methanol extract of Ficus platyphylla (FP) stem bark on seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice. The 35S-GTPγS, glutamate and γ-aminobutyric acid receptors binding properties of the extract were also evaluated. Male CD-1 mice were kindled with an initial subeffective dose of pentylenetetrazole (PTZ, 37.5 mg/kg, i.p.) for a total of 13 convulsant injections and the treatment groups concurrently received FP (100 and 200 mg/kg). Control animals received the same number of saline injections. Twenty-four h after kindling completion the animals’ learning performance was tested in a two-way shuttle-box. The animals were challenged with another subeffective dose of PTZ (32.5 mg/kg, i.p.) on day 7 after kindling completion. Animals were sacrificed a day after the challenged experiment and the brains were processed for histological investigation. FP ameliorates seizure severity, cognitive deficits and neuronal cell loss in PTZ kindled mice. Components of the extract showed affinity for GABAergic and glutamatergic receptors. Glutamate release was diminished and the 35S-GTPγS binding assay revealed no intrinsic activity at glutamatergic receptors. Our results revealed that FP contains psychoactive secondary metabolites with anticonvulsant properties, thus supporting the isolation and development of the biologically active components of this medicinal plant as antiepileptic agents.  相似文献   

10.
The influence of white rats immunization by a covalent conjugate of serum albumin with sydnophen on the seizure activity in the single and repeated injections of pentylenetetrazole was investigated. The immunization lowered the seizure activity in single injections of threshold doses, (60 mg/kg) of pentylenetetrazole. The repeated daily injections of the drug in subthreshold doses (30 mg/kg) inhibited the process of "kindling" effects formation.  相似文献   

11.
Anti-convulsant effects of physical exercise and lipoic acid (LA), also referred to as thioctic acid with antioxidant activity, were investigated using chemical induced seizure model. We investigated the synergic effect of physical exercise and LA on kainic acid-induced seizure activity caused by oxidative stress. After 8 weeks of swimming training, body weight decreased and endurance capacity increased significantly compared to sedentary mice. Kainic acid (30 mg/kg, i.p.) evoked seizure activity 5 min after injection, and seizure activity peaked approximately 80 min after kainic acid treatment. Median seizure activity score in KA only treated group was 4.55 (range 0.5–5), 3.45 for “LA + KA” group (range 0.5–4.3), 3.12 for “EX + KA” group (range 0.05–3.4, p < 0.05 vs. “KA only” group), 2.13 for “EX + LA + KA” group (range 0.5–3.0, p < 0.05 vs. “EX + KA” group). Also, there was a synergic cooperation of exercise and LA in lowering the mortality in kainic acid treated mice (χ2 = 5.45, p = 0.031; “EX + KA” group vs. “LA + EX + KA” group). In addition, the synergic effect of exercise and LA was found in PGx activity compared to separated treatment (“LA + EX + KA”: 37.3 ± 1.36; p < 0.05 vs. “LA + KA” and “EX + KA” group). These results indicate that physical exercise along with LA could be a more efficient method for modulating seizure activity and oxidative stress.  相似文献   

12.
13.
Lead (Pb) is known to have toxic effects on the brain; however, data regarding its specific toxic effects on the olfactory bulb are lacking. Therefore, we investigated the relationship between acute Pb exposure and alterations in gene expression associated with the nitric oxide signaling pathway in the olfactory bulb of mice. After administration of Pb (intraperitoneal injections of 1 or 10 mg/kg Pb(CH3CO2)2 · 3H2O once per day for 4 days), body weight, motor activity, and gene expression in the olfactory bulb of mice were examined. High doses of Pb resulted in significant decreases in body weight, but motor coordination was not significantly altered until 11 days after the end of Pb treatment. The expression patterns of dimethylarginine dimethylaminohydrolase 1 (Ddah1), superoxide dismutase 1 (Sod1), and superoxide dismutase (Ccs) were increased, whereas expression of the Stratifin (Sfn) gene was significantly decreased following treatment with 10 mg/kg Pb. The expression patterns of nitric oxide synthases at the mRNA and protein levels, however, were not significantly altered by treatment with 10 mg/kg Pb. These findings indicate that Pb-induced neurotoxicity may be modulated in part by the expression of Ddah1, Sod1, Ccs, and Sfn in the olfactory bulb.  相似文献   

14.
The anticonvulsant effect of phenobarbital was examined in young (6 month old) and old (24 month old) BDF1 female mice consisting of three groups each (one control and two chronically dosed phenobarbital groups), using the abolition of the tonic hindlimb extensor component of maximal electroshock seizure as the index. The minimal effective concentrations (MEC) of phenobarbital in plasma and brain in old control mice that were given a vehicle (tragacanth) for one week were significantly lower in comparison to the respective values in young adult control mice with the same treatment, confirming our previous findings. In young mice chronically treated with phenobarbital for one week (20 mg/kg daily for two days followed by daily dose of 50 mg/kg for 5 days), the MECs in both plasma and brain were significantly higher compared with respective control values. The 3 week treatment also produced an increase in MEc comparable to the one-week treatment. The same one-week treatment with phenobarbital in old mice similarly caused significantly higher plasma and brain MEC values but 3-week-treatment values were not significantly different from corresponding control values. It is concluded that the development of brain adaptation to phenobarbital is almost equal for young and old mice, so that the reduction in MEC with age indicates the need for lowered dosages for the aged, even when the age effect on brain adaptation developed to chronic dosing is taken into consideration.  相似文献   

15.
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.  相似文献   

16.
Neonatal DBA/2J, 101/HY and CBA/Lac/Sto mice (2-7-day-old) were subcutaneously injected with caffeine (200 mg/kg), piracetam (50 mg/kg) or distilled water. At the age of 1 month, they were tested for audiogenic seizure susceptibility (SS). The neonatal injections changed SS in 1-month-old mice in a genotype-dependent manner. Distilled water (control of neonatal pain stimulation) slightly reduced the audiogenic fit severity (arbitrary scores) the effect being most distinct in DBA/2J, less strong in 101/HY strain and absent in CBA. Caffeine neonatal injections induced slight changes in DBA/2J, no changes in CBA and increased SS in 101/HY mice. Piracetam reduced fit intensity in DBA/2J mice but increased it in CBA and, especially, in 101/HY strain. Genotype-dependent differences in physiological mechanisms of audiogenic seizures may be responsible for different remote effects of early treatment.  相似文献   

17.
Increasing evidence supports the role of excitotoxicity in neuronal cell injury. Thus, it is extremely important to explore methods to retard or reverse excitotoxic neuronal injury. In this regard, certain dietary compounds are beginning to receive increased attention, in particular those involving phytochemicals found in medicinal plants in alleviating neuronal injury. In the present study, we examined whether medicinal plant extracts protect neurons against excitotoxic lesions induced by kainic acid (KA) in female Swiss albino mice. Mice were anesthetized with ketamine and xylazine (200 mg and 2 mg/kg body wt. respectively) and KA (0.25 microg in a volume of 0.5 microl) was administered to mice by intra hippocampal injections. The results showed an impairment of the hippocampus region of brain after KA injection. The lipid peroxidation and protein carbonyl content were significantly (P < 0.05) increased in comparison to controls. Glutathione peroxidase (GPx) activity (EC 1.11.1.9) and reduced glutathione (GSH) content declined after appearance of excitotoxic lesions. As GPx and GSH represent a major pathway in the cell for metabolizing hydrogen peroxide (H2O2), their depletion would be expected to allow H2O2 to accumulate to toxic levels. Dried ethanolic plant extracts of Withania somnifera (WS), Convolvulus pleuricauas (CP) and Aloe vera (AV) dissolved in distilled water were tested for their total antioxidant activity. The diet was prepared in terms of total antioxidant activity of plant extracts. The iron (Fe3+) reducing activity of plant extracts was also tested and it was found that WS and AV were potent reductants of Fe3+ at pH 5 5. CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly and in combination 3 weeks prior to KA injections resulted in a decrease in neurotoxicity. Measures of lipid peroxidation and protein carbonyl declined. GPx activity and GSH content were elevated in hippocampus supplemented with WS and combination of WS + CP + AV. However, when CP and AV were given alone, the changes in the GPx activity and GSH content were not significant. Although the major factors involved in these properties of phytochemicals remain to be specified, the finding of this study has suggested that phytochemicals present in plant extracts mitigate the effects of excitotoxicity and oxidative damage in hippocampus and this might be accomplished by their antioxidative properties.  相似文献   

18.
We investigated the effects of red pepper (Capsicum annuum Lin.) extracts (capsicum extract) and its main pungent capsaicin on T helper 1 (Th1) and 2 (Th2) cytokine production in cultured murine Peyer's patch (PP) cells in vitro and ex vivo. Direct administration of capsicum extract (1 and 10 mug/ml) and capsaicin (3 and 30 muM) resulted in suppression of interleukin (IL)-2, interferon (IFN)-gamma, IL-4 and IL-5 production. In an ex vivo experiment using PP cells removed from the mice after oral administration of capsicum extract (10 mg/kg/day for 4 consecutive days), IL-2, IFN-gamma and IL-5 increased in response to concanavalin A (Con A). Oral administration of 3 mg/kg/day capsaicin, one active constituent of the extract, also enhanced IL-2, INF-gamma and IL-4 production in response to Con A stimulation but did not influence the production of IL-5. Orally administered capsazepine (3 mg/kg/day), a selective transient receptor potential vanilloid 1 (TRPV1) antagonist, slightly enhanced IL-2 production also irrespective of Con A stimulation. The capsaicin-induced enhancement of both IL-2 and IFN-gamma production was not reduced by oral administration of capsazepine (3 mg/kg/day), suggesting a TRPV1 receptor-independent mechanism. Flow cytometric analysis revealed that the population of CD3(+) cells in the PP cells was significantly reduced while CD19(+) cells increased after oral administration of capsicum extract (1 and 10 mg/kg/day) and capsaicin (0.3 and 3 mg/kg/day). Capsazepine (3 mg/kg/day) weakly but significantly reversed these effects. Orally administered capsicum extract and capsaicin did not change the T cell subset (CD4(+) and CD8(+)), Th1 (IFN-gamma(+)) and T2 (IL-4(+)) ratio. These findings indicate that capsicum extract and capsaicin modulate T cell-immune responses, and their immunomodulatory effects on murine PP cells are partly due to both TRPV1-dependent and -independent pathway.  相似文献   

19.
用红藻氨酸(KainicAcid,KA)12mg/kg给SD大鼠颈部皮下注射,诱发动物出现癫痫发作,该癫痫发作于8小时内完全缓解。KA后1周再次给予KA(此次为阈下剂量5mg/kg),检测上述动物对癫痫刺激的敏感性。结果表明,与对照组比较,于4周前开始并连续灌服微生态调节剂实验组动物癫痫敏感性的形成受到明显抑制(P<0001),同时用免疫细胞化学方法观察大鼠脑内海马部位星形胶质细胞的神经胶质原纤维酸性蛋白(GlialFibrilaryacidicproteinGFAP)免疫反应活性的变化,发现KA后1~7天,实验组与对照组比较,海马部位神经胶质原纤维酸性蛋白免疫反应活性明显受到抑制。结果表明微生态调节剂的抗癫痫敏感性作用可能与抑制胶质细胞过度增生有关。  相似文献   

20.
This study aimed to investigate the potential neurotoxic effects of aflatoxin B1 (AFB1) and the preventive effects of saffron. Male Balb-c mice received AFB1 (0.6 mg/kg/day intraperitoneally for 4 days), saffron infusion (90 mg styles/200 mL, ad libitum access for 2 weeks) or saffron infusion plus AFB1 (saffron treatment as previously plus 0.6 mg AFB1/kg/day intraperitoneally for the last 4 days). Control mice were intraperitoneally injected with DMSO:saline (1:1, v/v) during AFB1 treatment. Learning/memory was assessed by passive avoidance task. The activity of acetylcholinesterase [AChE, salt-(SS)/detergent-soluble(DS) isoforms], butyrylcholinesterase (BuChE, SS/DS isoforms), monoamine oxidase (MAO-A, MAO-B), the levels of lipid peroxidation (malondialdehyde, MDA) and reduced glutathione (GSH), were determined in whole brain (minus cerebellum) and cerebellum. We demonstrate for the first time that AFB1 administration impaired the memory of adult mice and decreased significantly whole brain AChE and BuChE activity, cerebellar AChE activity and cerebral GSH content. Moreover, MAO isoforms activity in whole brain, MAO-B activity in cerebellum and MDA levels of both tissues were significantly higher after AFB1 treatment. Pre-treatment with saffron prevented memory decline, activation of MAO-A and MAO-B in whole brain and cerebellum, respectively, and lipid peroxidation triggered by AFB1. Interestingly, the activity of AChE isoforms in whole brain, DS-AChE in cerebellum and GSH levels of both tissues were further significantly decreased in saffron?+AFB1-treated mice compared with AFB1 group. Our findings support the neuroprotective efficacy of saffron against AFB1 in adult mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号