首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Etoposide, a semi-synthetic derivative of podophyllotoxin, is one of the most active and useful antineoplastic agent used routinely in firstline combination chemotherapy of testicular cancer, small-cell lung cancer and non-Hodgkin’s lymphoma. Etoposide displays narrow therapeutic index, erratic pharmacokinetics and dose individualization that needs to be achieved for overcoming inter- and intra-patient variability (25–80%), so as to maintain proper drug exposure within a therapeutic range. Etoposide posses high plasma protein binding (97%) and is degraded via complex metabolic pathways. The main pharmacokinetic determinants of etoposide are still not completely defined in order to optimize the pharmaco-therapeutic parameters including dose, therapeutic schedule and route of administration. Much research has been done to determine drug–drug and herb–drug interactions for improving the bioavailability of etoposide. The present article gives insight on pharmaceutical and pharmacological attempts made from time to time to overcome the erratic inter- and intra-patient variability for improving the bioavailability of etoposide.  相似文献   

2.
In the present investigation, a UPLC–qTOF-MS/MS method has been developed for the simultaneous determination of etoposide and a piperine analogue, namely, 4-ethyl 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid piperidide (PA-1). The analytes were separated on a reverse phase C18 column using methanol–water (72:28, v/v) mobile phase with a flow rate of 250 μL/min. The qTOF-MS was operated under multiple reaction monitoring mode using electro-spray ionization (ESI) technique with positive ion polarity. The major product ions for etoposide and PA-1 were at m/z 185.1350 and 164.1581, respectively. The recovery of the analytes from mouse plasma was optimized using solid phase extraction technique. The total run time was 6 min and the elution of etoposide and PA-1 occurred at 1.24 and 2.84 min, respectively. The calibration curves of etoposide as well as PA-1 were linear over the concentration range of 2–1000 ng/mL (r2, 0.9829), and 1–1000 ng/mL (r2, 0.9989), respectively. For etoposide intra-assay and inter-assay accuracy in terms of % bias was in between ?7.65 to +6.26, and ?7.83 to +5.99, respectively. For PA-1 intra-assay and inter-assay accuracy in terms of % bias was in between ?7.01 to +9.10, and ?7.36 to +6.71, respectively. The lower limit of quantitation for etoposide and PA-1 were 2.0 and 1.0 ng/mL, respectively. Analytes were stable under various conditions (in autosampler, during freeze–thaw, at room temperature, and under deep-freeze conditions). The method was used for a pharmacokinetic study which showed that PA-1 enhanced the oral bioavailability of etoposide in mice by 2.32-fold.  相似文献   

3.
Etoposide is one of the most successful chemotherapeutic agents used for the treatment of human cancers. The drug kills cells by inhibiting the ability of topoisomerase II to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. Etoposide is composed of a polycyclic ring system (rings A-D), a glycosidic moiety at the C4 position, and a pendent ring (E-ring) at the C1 position. Although drug-enzyme contacts, as opposed to drug-DNA interactions, mediate the entry of etoposide into the topoisomerase II-drug-DNA complex, the substituents on etoposide that interact with the enzyme have not been identified. Therefore, saturation transfer difference [1H]-nuclear magnetic resonance spectroscopy and protein-drug competition binding assays were employed to define the groups on etoposide that associate with yeast topoisomerase II and human topoisomerase IIalpha. Results indicate that the geminal protons of the A-ring, the H5 and H8 protons of the B-ring, and the H2' and H6' protons and the 3'- and 5'-methoxyl protons of the pendent E-ring interact with both enzymes in the binary protein-ligand complexes. In contrast, no significant nuclear Overhauser enhancement signals arising from the C-ring, the D-ring, or the C4 glycosidic moiety were observed with either enzyme, suggesting that there is limited or no contact between these portions of etoposide and topoisomerase II in the binary complex. The functional importance of E-ring substituents was confirmed by topoisomerase II-mediated DNA cleavage assays.  相似文献   

4.
Etoposide is a widely prescribed anticancer agent that stabilizes topoisomerase II-mediated DNA strand breaks. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. A recent study that focused on yeast topoisomerase II demonstrated that the H15 geminal protons of the etoposide A-ring, the H5 and H8 protons of the B-ring, and the H2', H6', 3'-methoxyl, and 5'-methoxyl protons of the E-ring contact topoisomerase II in the binary enzyme-drug complex [ Wilstermann et al. (2007) Biochemistry 46, 8217-8225 ]. No interactions with the C4 sugar were observed. The present study used DNA cleavage assays, saturation transfer difference [ (1)H] NMR spectroscopy, and enzyme-drug binding studies to further define interactions between etoposide and human topoisomerase IIalpha. Etoposide and three derivatives that lacked the C4 sugar were analyzed. Except for the sugar, 4'-demethyl epipodophyllotoxin is identical to etoposide, epipodophyllotoxin contains a 4'-methoxyl group on the E-ring, and 6,7- O, O-demethylenepipodophyllotoxin replaces the A-ring with a diol. Results suggest that etoposide-topoisomerase IIalpha binding is driven by interactions with the A- and B-rings and potentially by stacking interactions with the E-ring. We propose that the E-ring pocket on the enzyme is confined, because the addition of bulk to this ring adversely affects drug function. The A- and E-rings do not appear to contact DNA in the enzyme-drug-DNA complex. Conversely, the sugar moiety subtly alters DNA interactions. The identification of etoposide substituents that contact topoisomerase IIalpha in the binary complex has predictive value for drug behavior in the enzyme-etoposide-DNA complex.  相似文献   

5.
Kingma PS  Burden DA  Osheroff N 《Biochemistry》1999,38(12):3457-3461
Despite the prevalence of topoisomerase II-targeted drugs in cancer chemotherapy and the impact of drug resistance on the efficacy of treatment, interactions between these agents and topoisomerase II are not well understood. Therefore, to further define interactions between anticancer drugs and the type II enzyme, a nitrocellulose filter assay was used to characterize the binding of etoposide to yeast topoisomerase II. Results indicate that etoposide binds to the enzyme in the absence of DNA. The apparent Kd value for the interaction was approximately 5 microM drug. Etoposide also bound to ytop2H1012Y, a mutant yeast type II enzyme that is approximately 3-4-fold resistant to etoposide. However, the apparent Kd value for the drug (approximately 16 microM) was approximately 3 times higher than that determined for wild-type topoisomerase II. Although it has been widely speculated that resistance to topoisomerase II-targeted anticancer agents results from a decreased drug-enzyme binding affinity, these data provide the first direct evidence in support of this hypothesis. Finally, the ability of yeast topoisomerase II to bind etoposide was dependent on the presence of the hydroxyl moiety of Tyr783, suggesting specific interactions between etoposide and the active site residue that is involved in DNA scission.  相似文献   

6.
Based on the known coumarin-based prodrug system, a new meptazinol (Z)-3-[2-(propionyloxy) phenyl]-2-propenoic ester (3) was designed and synthesized as prodrug to minimize the first-pass effect of meptazinol (1) and improve the oral bioavailability. The prodrug (3) showed a 4-fold increase in oral bioavailability over the parent drug meptazinol in rats.  相似文献   

7.
Poor oral bioavailability is the single most important challenge in drug delivery. Prominent among the factors responsible for this is metabolic activity of the intestinal and hepatic cytochrome P450 (CYP450) enzymes. In preliminary studies, it was demonstrated that 8-arm-PEG was able to inhibit the felodipine metabolism. Therefore, this report investigated the oral bioavailability-enhancing property of 8-arm-PEG employing detailed in vitro, in vivo, and in silico evaluations. The in vitro metabolism of felodipine by cytochrome P450 3A4-expressed human liver microsomes (HLM) was optimized yielding a typical Michaelis–Menten plot through the application of Enzyme Kinetic Module software from where the enzyme kinetic parameters were determined. In vitro investigation of 8-arm-poly(ethylene glycol) against CYP3A4-catalyzed felodipine metabolism employing human liver microsomes compared closely with naringenin, a typical grapefruit flavonoid, yielding IC50 values of 7.22 and 121.97 μM, respectively. The investigated potential of 8-arm-poly(ethylene glycol) in oral drug delivery yielded satisfactory in vitro drug release results. The in vivo studies of the effects of 8-arm-poly(ethylene glycol) on the oral bioavailability of felodipine as performed in the Large White pig model showed a >100% increase in plasma felodipine levels compared to controls, with no apparent effect on systemic felodipine clearance. The outcome of this research presents a novel CYP3A4 inhibitor, 8-arm-poly(ethylene glycol) for oral bioavailability enhancement.  相似文献   

8.
Etoposide is a widely used anticancer drug in the treatment of different tumors. Etoposide is known to activate a wide range of intracellular signals, which may in turn induce cellular responses other than apoptosis. ADAM10 and TACE/ADAM17 belong to a family of transmembrane extracellular metalloproteinases involved in paracrine/juxtacrine regulation of many signaling pathways. The aim of this work was to evaluate if etoposide induces upregulation of ADAM10 or TACE/ADAM17 in two cell lines (GC-1 and GC-2) derived from male germ cells. Results showed that etoposide induced apoptosis in a dose-response manner in both GC-1 and GC-2 cells. Apoptosis started to increase 6 h after etoposide addition in GC-2 cells, whereas the same was observed 18 h after addition to the GC-1 cells. Protein and mRNA levels of ADAM10 and TACE/ADAM17 increased 18 h after etoposide was removed from the GC-1 cells. In GC-2 cells, the protein levels of both proteins increased 12 h after etoposide was removed. ADAM10 mRNA increased after 3 h and then steadily decreased up to 12 h after removal, whereas TACE/ADAM17 mRNA decreased after etoposide removal. Finally, apoptosis was prevented in GC-1 and GC-2 cells by the addition of pharmacological inhibitors of ADAM10 and TACE/ADAM17 to the culture medium of etoposide-treated cells. Our results show for the first time that etoposide upregulates ADAM10 and TACE/ADAM17 mRNA and protein levels. In addition, we also show that ADAM10 and TACE/ADAM17 have a role in etoposide-induced apoptosis.  相似文献   

9.
Etoposide is a topoisomerase II poison that is used to treat a variety of human cancers. Unfortunately, 2-3% of patients treated with etoposide develop treatment-related leukemias characterized by 11q23 chromosomal rearrangements. The molecular basis for etoposide-induced leukemogenesis is not understood but is associated with enzyme-mediated DNA cleavage. Etoposide is metabolized by CYP3A4 to etoposide catechol, which can be further oxidized to etoposide quinone. A CYP3A4 variant is associated with a lower risk of etoposide-related leukemias, suggesting that etoposide metabolites may be involved in leukemogenesis. Although etoposide acts at the enzyme-DNA interface, several quinones poison topoisomerase II via redox-dependent protein adduction. The effects of etoposide quinone on topoisomerase IIα-mediated DNA cleavage have been examined previously. Although findings suggest that the activity of the quinone is slightly greater than that of etoposide, these studies were carried out in the presence of significant levels of reducing agents (which should reduce etoposide quinone to the catechol). Therefore, we examined the ability of etoposide quinone to poison human topoisomerase IIα in the absence of reducing agents. Under these conditions, etoposide quinone was ~5-fold more active than etoposide at inducing enzyme-mediated DNA cleavage. Consistent with other redox-dependent poisons, etoposide quinone inactivated topoisomerase IIα when incubated with the protein prior to DNA and lost activity in the presence of dithiothreitol. Unlike etoposide, the quinone metabolite did not require ATP for maximal activity and induced a high ratio of double-stranded DNA breaks. Our results support the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis.  相似文献   

10.
We have examined the ability of etoposide to induce apoptosis in two recently established rat salivary acinar cell lines. Etoposide induced apoptosis in the parotid C5 cell line as evidenced by the appearance of cytoplasmic blebbing and nuclear condensation, DNA fragmentation and cleavage of PARP. Etoposide also induced activation of c-jun N-terminal kinase (JNK) in parotid C5 cells by 4 h after treatment, with maximal activation at 8 - 10 h. Coincident with activation of JNK, the amount of activated ERK1 and ERK2 decreased in etoposide-treated parotid C5 cells. In contrast to the parotid C5 cells, the vast majority of submandibular C6 cells appeared to be resistant to etoposide-induced apoptosis. Likewise, activation of JNKs was not observed in etoposide-treated submandibular C6 cells, and the amount of activated ERK1 and ERK2 decreased only slightly. Etoposide treatment of either cell line had no effect upon the activation of p38. Treatment of the parotid C5 cells with Z-VAD-FMK, a caspase inhibitor, inhibited etoposide-induced activation of JNK and DNA fragmentation. These data suggest that etoposide may induce apoptosis in parotid C5 cells by activating JNKs and suppressing the activation of ERKs, thus creating an imbalance in these two signaling pathways.  相似文献   

11.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

12.
Cidofovir (HPMPC) is a broad-spectrum anti-viral agent whose potential, particularly in biodefense scenarios, is limited by its low oral bioavailability. Two prodrugs (3 and 4) created by conjugating ethylene glycol-linked amino acids (L-Val, L-Phe) with the cyclic form of cidofovir (cHPMPC) via a P-O ester bond were synthesized and their pH-dependent stability (3 and 4), potential for in vivo reconversion to drug (3), and oral bioavailability (3) were evaluated. The prodrugs were stable in buffer between pH 3 and 5, but underwent rapid hydrolysis in liver (t(1/2) = 3.7 min), intestinal (t(1/2) = 12.5 min), and Caco-2 cell homogenates (t(1/2) = 20.2 min). In vivo (rat), prodrug 3 was >90% reconverted to cHPMPC. The prodrug was 4x more active than ganciclovir (IC50 value, 0.68 microM vs 3.0 microM) in a HCMV plaque reduction assay. However, its oral bioavailability in a rat model was similar to the parent drug. The contrast between the promising activation properties and unenhanced transport of the prodrug is briefly discussed.  相似文献   

13.
Etoposide is a widely prescribed anticancer drug that stabilizes covalent topoisomerase II-cleaved DNA complexes. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. Interactions between human topoisomerase IIα and etoposide in the binary enzyme--drug complex appear to be mediated by substituents on the A-, B-, and E-rings of etoposide. These protein--drug contacts in the binary complex have predictive value for the actions of etoposide within the ternary topoisomerase IIα--drug--DNA complex. Although the D-ring of etoposide does not appear to contact topoisomerase IIα in the binary complex, etoposide derivatives with modified D-rings display reduced cytotoxicity against murine leukemia cells [Meresse, P., et al. (2003) Bioorg. Med. Chem. Lett. 13, 4107]. This finding suggests that alterations in the D-ring may affect etoposide activity toward topoisomerase IIα in the ternary enzyme--drug--DNA complex. Therefore, to address the potential contributions of the D-ring to the activity of etoposide, we characterized drug derivatives in which the C13 carbonyl was moved to the C11 position (retroetoposide and retroDEPT) or the D-ring was opened (D-ring diol). All of the D-ring alterations decreased the ability of etoposide to enhance DNA cleavage mediated by human topoisomerase IIα in vitro and in cultured cells. They also weakened etoposide binding in the ternary enzyme--drug--DNA complex and altered sites of enzyme-mediated DNA cleavage. On the basis of these findings, we propose that the D-ring of etoposide has important interactions with DNA in the ternary topoisomerase II cleavage complex.  相似文献   

14.
Etoposide is a semi-synthetic glycoside derivative of podophyllotoxin, also known as VP-16. It is a widely used anticancer medicine in clinics. Unfortunately, high doses or long-term etoposide treatment can induce therapy-related leukemia. The mechanism by which etoposide induces secondary hematopoietic malignancies is still unclear. In this article, we review the potential mechanisms of etoposide induced therapy-related leukemia. Etoposide related leukemogenesis is known to depend on reactive oxidative metabolites of etoposide, notably etoposide quinone, which interacts with cellular proteins such as topoisomerases II (TOP2), CREB-binding protein (CREBBP), and T-Cell Protein Tyrosine Phosphatase (TCPTP). CYP3A4 and CYP3A5 metabolize etoposide to etoposide catechol, which readily oxidizes to etoposide quinone. As a poison of TOP2 enzymes, etoposide and its metabolites induce DNA double-stranded breaks (DSB), and the accumulation of DSB triggers cell apoptosis. If the cell survives, the DSB gives rise to the likelihood of faulty DNA repair events. The gene translocation could occur in mixed-lineage leukemia (MLL) gene, which is well-known in leukemogenesis. Recently, studies have revealed that etoposide metabolites, especially etoposide quinone, can covalently bind to cysteines residues of CREBBP and TCPTP enzymes, . This leads to enzyme inhibition and further affects histone acetylation and phosphorylation of the JAK-STAT pathway, thus putatively altering the proliferation and differentiation of hematopoietic stem cells (HSC). In brief, current studies suggest that etoposide and its metabolites contribute to etoposide therapy-related leukemia through TOP2 mediated DSB and impairs specific enzyme activity, such as CREBBP and TCPTP.  相似文献   

15.

Background

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

Methodology/Principal Findings

To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity.

Conclusions/Significance

These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity.  相似文献   

16.
Poly(ε-caprolactone) implants containing etoposide, an important chemotherapeutic agent and topoisomerase II inhibitor, were fabricated by a melt method and characterized in terms of content uniformity, morphology, drug physical state, and sterility. In vitro and in vivo drug release from the implants was also evaluated. The cytotoxic activity of implants against HeLa cells was studied. The short-term tolerance of the implants was investigated after subcutaneous implantation in mice. The original chemical structure of etoposide was preserved after incorporation into the polymeric matrix, in which the drug was dispersed uniformly. Etoposide was present in crystalline form in the polymeric implant. In vitro release study showed prolonged and controlled release of etoposide, which showed cytotoxicity activity against HeLa cells. After implantation, good correlation between in vitro and in vivo drug release was found. The implants demonstrated good short-term tolerance in mice. These results tend to show that etoposide-loaded implants could be potentially applied as a local etoposide delivery system.  相似文献   

17.
An orally bioavailable series of ketoamide-based cathepsin K inhibitors with good pharmacokinetic properties has been identified. Starting from a potent inhibitor endowed with poor drug properties, conformational constraint of the P(2)-P(3) linker and modifications to P(1') elements led to an enhancement in potency, solubility, clearance, and bioavailability. These optimized inhibitors attenuated bone resorption in a rat TPTX hypocalcemic bone resorption model.  相似文献   

18.
Etoposide, a highly active and widely used antineoplastic agent, is O-demethylated to its active catechol metabolite. A high-performance liquid chromatographic assay method for the simultaneous quantitation of etoposide and etoposide catechol in human plasma was established. Etoposide and etoposide catechol were extracted from plasma using chloroform and methanol followed by phase separation, evaporation of the organic phase, and reconstitution of the residue. Chromatography was accomplished using a reversed-phase phenyl analytical column (390 mm×3.9 mm I.D.) with a mobile phase of 76.6% 25 mM citric acid–50 mM sodium phosphate (pH 2.4)–23.4% acetonitrile pumped isocratically at 1 ml/min with electrochemical detection. The limit of detection for etoposide was 1.2 nM and for etoposide catechol was 0.2 nM. The precision (CV) for etoposide ranged from 0.7 to 3% and for the catechol metabolite from 1 to 6%; accuracy of predicted values ranged from 97 to 106% and 94 to 103%, respectively. The assay was linear from 0.1 to 10 μM for etoposide and from 0.005 to 0.5 μM for etoposide catechol in plasma. Recovery of etoposide and etoposide catechol ranged from 93 to 95% and 90 to 98%, respectively. Stability of etoposide and etoposide catechol in human plasma containing ascorbic acid stored at −70°C for one year was demonstrated. This assay procedure is suitable for evaluation of etoposide and etoposide catechol pharmacokinetics in plasma following etoposide administration.  相似文献   

19.
Li K  Tang Y  Fawcett JP  Gu J  Zhong D 《Steroids》2005,70(8):525-530
Dioscin (diosgenyl 2,4-di-O-alpha-l-rhamnopyranosyl-beta-d-glucopyranoside) is an important constituent of some traditional Chinese medicines with several bioactivities. We have investigated the pharmacokinetics of dioscin in rat after intravenous and oral administrations. Compartmental methods were used to perform pharmacokinetic data analysis. The dose-dependent pharmacokinetics of dioscin was characterized after intravenous administrations (0.064, 0.16, 0.4 and 1.0mg/kg) to rats. There was significant decrease in clearance with increasing dose (4.67+/-0.09 ml/min/kg (0.064 mg/kg) versus 3.49+/-0.23 ml/min/kg (1.0 mg/kg), P<0.05), and the plot of reciprocal clearance values versus the doses was linear (r=0.909, P<0.05). After an I.V. dose of 1mg/kg, simultaneous oral gavage of activated charcoal did not change the pharmacokinetic parameters indicating enterohepatic recycling of dioscin is not important in rat. The absolute oral bioavailability was very low (0.2%). In tissue distribution and bile excretion studies after I.V. and oral administrations, dioscin was shown to undergo a prolonged absorption from the intestinal tract and slow elimination from organs, and only a small amount of drug was recovered in bile. The cumulative amounts of dioscin in feces and urine indicated that the parent drug is mainly excreted in the feces.  相似文献   

20.
Absorption of drugs from the oral cavity into the mucosal tissues is typically a fast event. Dissolved drugs partition into the mucosal membranes and within minutes will reach equilibrium with drug in solution in the oral cavity. However, this does not always equate to rapid drug appearance in the systemic circulation. This has been attributed to slow partitioning out of the mucosal tissues and into the systemic circulation. Based on information from literature, physicochemical properties of asenapine, and clinical data, we conclude that for sublingually administered asenapine, the exposure is primarily a function of rapid partitioning into the mucosal membranes. This is followed by slow partitioning out of the mucosal tissues and into the systemic circulation, leading to a Tmax value of about 1 h. The bioavailability of asenapine at doses below the saturation solubility in the mouth does not change and is controlled primarily by mass transport equilibrium. At doses above the saturation solubility, the bioavailability becomes more dependent not only on the distribution equilibrium but also on contact time in the mouth because additional variables (e.g. dissolution rate of the drug) need to be accounted for. These explanations are consistent with oral cavity absorption models from the literature and can be used to accurately describe the clinical data for asenapine.KEY WORDS: asenapine, exposure, oral mucosal absorption, Tmax  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号