首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   

2.
Mounting evidence points to a linkage between biodiversity and ecosystem functioning (B-EF). Global drivers, such as warming and nutrient enrichment, can alter species richness and composition of aquatic fungal assemblages associated with leaf-litter decomposition, a key ecosystem process in headwater streams. However, effects of biodiversity changes on ecosystem functions might be countered by the presumed high functional redundancy of fungal species. Here, we examined how environmental variables and leaf-litter traits (based on leaf chemistry) affect taxonomic and functional α- and β-diversity of fungal decomposers. We analysed taxonomic diversity (DNA-fingerprinting profiles) and functional diversity (community-level physiological profiles) of fungal communities in four leaf-litter species from four subregions differing in stream-water characteristics and riparian vegetation. We hypothesized that increasing stream-water temperature and nutrients would alter taxonomic diversity more than functional diversity due to the functional redundancy among aquatic fungi. Contrary to our expectations, fungal taxonomic diversity varied little with stream-water characteristics across subregions, and instead taxon replacement occurred. Overall taxonomic β-diversity was fourfold higher than functional diversity, suggesting a high degree of functional redundancy among aquatic fungi. Elevated temperature appeared to boost assemblage uniqueness by increasing β-diversity while the increase in nutrient concentrations appeared to homogenize fungal assemblages. Functional richness showed a negative relationship with temperature. Nonetheless, a positive relationship between leaf-litter decomposition and functional richness suggests higher carbon use efficiency of fungal communities in cold waters.  相似文献   

3.
For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.  相似文献   

4.
Environmental stressors and changes in land use have led to rapid and dramatic species losses. As such, we need effective monitoring programs that alert us not only to biodiversity losses, but also to functional changes in species assemblages and associated ecosystem processes. Ants are important components of terrestrial food webs and a key group in food web interactions and numerous ecosystem processes. Their sensitive and rapid response to environmental changes suggests that they are a suitable indicator group for the monitoring of abiotic, biotic, and functional changes. We tested the suitability of the incidence (i.e. the sum of all species occurrences at 30 baits), species richness, and functional richness of ants as indicators of ecological responses to environmental change, forest degradation, and of the ecosystem process predation on herbivorous arthropods. We sampled data along an elevational gradient (1000–3000 m a.s.l.) and across seasons (wetter and drier period) in a montane rainforest in southern Ecuador. The incidence of ants declined with increasing elevation but did not change with forest degradation. Ant incidence was higher during the drier season. Species richness was highly correlated with incidence and showed comparable results. Functional richness also declined with increasing elevation and did not change with forest degradation. However, a null-model comparison revealed that the functional richness pattern did not differ from a pattern expected for ant assemblages with randomly distributed sets of traits across species. Predation on artificial caterpillars decreased along the elevational gradient; the pattern was not driven by elevation itself, but by ant incidence (or interchangeable by ant richness), which positively affected predation. In spite of lower ant incidence (or ant richness), predation was higher during the wetter season and did not change with forest degradation and ant functional richness. We used path analysis to disentangle the causal relationships of the environmental factors temperature (with elevation as a proxy), season, and habitat degradation with the incidence and functional richness of ants, and their consequences for predation. Our results would suggest that the forecasted global warming might support more active and species-rich ant assemblages, which in turn would mediate increased predation on herbivorous arthropods. However, this prediction should be made with reservation, as it assumes that the dispersal of ants keeps pace with the climatic changes as well as a one-dimensional relationship between ants and predation within a food-web that comprises species interactions of much higher complexity. Our results also suggested that degraded forests in our study area might provide suitable habitat for epigaeic, ground-dwelling ant assemblages that do not differ in incidence, species richness, functional richness, composition, or predation on arthropods from assemblages of primary forests. Most importantly, our results suggest that the occurrence and activity of ants are important drivers of ecosystem processes and that changes in the incidence and richness of ants can be used as effective indicators of responses to temperature changes and of predation within mega-diverse forest ecosystems.  相似文献   

5.
As old-growth forests are converted into edge-affected habitats, a substantial proportion of tropical biodiversity is potentially threatened. Here, we examine a comprehensive set of community-level attributes of fruit-feeding butterfly assemblages inhabiting edge-affected habitats in a fragmented Atlantic forest landscape devoted to sugar cane production. We also explored whether the consequences of habitat loss and fragmentation can interact and cause cascading ecosystem changes, with the pervasive simplification of tree assemblages inhabiting edge-dominated habitats, altering fruit-feeding butterfly persistence. Butterflies were sampled in three forest habitats: small fragments, forest edges and patches of forest interior of a primary forest fragment. Assemblage attributes, including taxonomic composition, correlated to some patch (patch size) and landscape (such as forest cover) metrics as well as habitat structure (tree density and richness). Fruit-feeding butterfly assemblages in the forest interior differed from those in small fragments due to an increased abundance of edge-specialist species. On the other hand, several forest-dependent species were missing in both small fragments and forest edges. Our results suggest that edge-affected habitats dominated by pioneer tree species support taxonomically distinct assemblages, including the presence of disturbance-adapted species, and butterfly community structure is highly sensitive to fragmentation- and plant-related variables, such as forest cover and pioneer tree species. In this way, while the establishment of human-modified landscapes probably results in the local extirpation of forest-dependent species, it allows the persistence of disturbance-adapted species. Thus, forest-dependent species conservation and the plant–animal interaction webs they support could be improved by retaining a significant amount of core forest habitat.  相似文献   

6.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

7.
JANI HEINO 《Freshwater Biology》2005,50(9):1578-1587
1. Biodiversity–environment relationships are increasingly well‐understood in the context of species richness and species composition, whereas other aspects of biodiversity, including variability in functional diversity (FD), have received rather little rigorous attention. For streams, most studies to date have examined either taxonomic assemblage patterns or have experimentally addressed the importance of species richness for ecosystem functioning. 2. I examined the relationships of the functional biodiversity of stream macroinvertebrates to major environmental and spatial gradients across 111 boreal headwater streams in Finland. Functional biodiversity encompassed functional richness (FR – the number of functional groups derived from a combination of functional feeding groups and habit trait groups), FD – the number of functional groups and division of individuals among these groups, and functional evenness (FE – the division of individuals among functional groups). Furthermore, functional structure (FS) comprised the composition and abundance of functional groups at each site. 3. FR increased with increasing pH, with additional variation related to moss cover, total nitrogen, water colour and substratum particle size. FD similarly increased with increasing pH and decreased with increasing canopy cover. FE decreased with increasing canopy cover and water colour. Significant variation in FS was attributable to pH, stream width, moss cover, substratum particle size, nitrogen, water colour with the dominant pattern in FS being related to the increase of shredder‐sprawlers and the decrease of scraper‐swimmers in acidic conditions. 4. In regression analysis and redundancy analysis, variation in functional biodiversity was not only related to local environmental factors, but a considerable proportion of variability was also attributable to spatial patterning of environmental variables and pure spatial gradients. For FR, 23.4% was related to pure environmental effects, 15.0% to shared environmental and spatial effects and 8.0% to spatial trends. For FD, 13.8% was attributable to environmental effects, 15.2% to shared environmental and spatial effects and 5% to spatial trends. For FE, 9.0% was related to environmental variables, 12.7% to shared effects of environmental and spatial variables and 4.5% to spatial variables. For FS, 13.5% was related to environmental effects, 16.9% to shared environmental and spatial effects and 15.4% to spatial trends. 5. Given that functional biodiversity should portray variability in ecosystem functioning, one might expect to find functionally rather differing ecosystems at the opposite ends of major environmental gradients (e.g. acidity, stream size). However, the degree to which variation in the functional biodiversity of stream macroinvertebrates truly portrays variability in ecosystem functioning is difficult to judge because species traits, such as feeding roles and habit traits, are themselves strongly affected by the habitat template. 6. If functional characteristics show strong responses to natural environmental gradients, they also are likely to do so to anthropogenic environmental changes, including changes in habitat structure, organic inputs and acidifying elements. However, given the considerable degree of spatial structure in functional biodiversity, one should not expect that only the local environment and anthropogenic changes therein are responsible for this variability. Rather, the spatial context, as well as natural variability along environmental gradients, should also be explicitly considered in applied research.  相似文献   

8.
Environmental factors are hypothesized to affect the functional diversity of assemblages hierarchically. First, ecological filters constrain the range of functional traits potentially displayed by an assemblage by determining its taxonomic composition. Second, some factors determine actual functional traits through the phenotypic plasticity of species. Little is known about the relative importance of each set of factors and, by using a priori functional information, most empirical studies report only the variability expected from species turnover and neglect that associated to phenotypic plasticity. Herein, we use structural equation models to assess the factors driving the functional richness, evenness, and divergence of a top‐predator assemblage faced with high variability in resource availability and assemblage structure (i.e. species richness and abundance). We measured actual functional traits (i.e. diet composition and predation pressure) in the field and contrasted the effects of environmental filters and phenotypic plasticity (i.e. behavioral responses) by controlling for species turnover and sample size with a null model. We found that a priori estimations (i.e. null‐model expectations) tended to significantly underestimate (richness and divergence) or overestimate (evenness) functional‐diversity components, explaining just a fraction (13–63%) of the variability in observed values. Furthermore, while species richness strongly affected functional richness (positively) and evenness (negatively), and resource availability slightly affected functional divergence, via compositional effects, changes in functional‐diversity components attributable to behavioral responses of predators showed little or no association with environmental variables. As a consequence, results indicated that in productive years, functionally‐distinctive species exerting relatively low predation pressure entered the assemblage, increasing functional richness and decreasing functional evenness. However, the strong behavioral responses of functionally dominant species buffered such compositional changes, affecting to different extents the three functional‐diversity components. Thus, we argue in favor of considering phenotypic plasticity in future studies of functional diversity.  相似文献   

9.
Most investigations of biogenic habitat provision consider the promotion of local biodiversity by single species, yet habitat-forming species are often themselves components of diverse assemblages. Increased prevalence of anthropogenic changes to assemblages of habitat-forming species prompts questions about the importance of facilitator biodiversity to associated organisms. We used observational and short-term (30 days) manipulative studies of an intertidal seaweed system to test for the implications of changes in four components of biodiversity (seaweed species richness, functional group richness, species composition, and functional group composition) on associated small mobile invertebrate epifauna. We found that invertebrate epifauna richness and abundance were not influenced by changes in seaweed biodiversity. Invertebrate assemblage structure was in most cases not influenced by changes in seaweed biodiversity; only when algal assemblages were composed of monocultures of species with ‘foliose’ morphologies did we observe a difference in invertebrate assemblage structure. Correlations between algal functional composition and invertebrate assemblage structure were observed, but there was no correlation between algal species composition and invertebrate assemblage structure. These results suggest that changes in seaweed biodiversity are likely to have implications for invertebrate epifauna only under specific scenarios of algal change.  相似文献   

10.
The Atlantic Forest (AF) is one of the five most threatened and megadiverse world hotspots. It is arguably the most devastated and highly threatened ecosystem on the planet. The vast scope of habitat loss and extreme fragmentation in the AF hotspots has left intact very few extensive and continuous forested fragments. We compared bird assemblages between small (<100 ha) and large (>6,000 ha) forest remnants, in one of the largest AF remnants in Argentina. We performed 84 point-counts of birds in four large fragments (LF) and 67 points in 25 small fragments (SF). We recorded 4,527 bird individuals belonging to 173 species; 2,632 belonging to 153 species in LF and 1,897 in 124 species in SF. Small fragments suffered a significant loss of bird richness, mainly forest dependent species, but the birds abundance did not decrease, due to an increase in abundance of forest independent and semi-dependent bird species (edge and non forest species) that benefit from forest fragmentation. The bird guilds of frugivores, undestory, terrestrial and midstory insectivores, nectarivores and raptors, and the endemic species of AF were area sensitive, decreasing significantly in richness and abundance in the SF. Terrestrial granivores were the only guild positively affected by forest fragmentation, containing mainly edge species, which forage in open areas or borders including crops. Our first observations on fragmentation effects on bird assemblages in the southernmost Argentinean Atlantic Forests did not validate the hypothesis on pre-adaptation to human disturbances in the bird communities of AF. On the contrary, we observed that forest dependent, endemic and several sensitive bird guilds were strongly affected by fragmentation, putting in evidence the vulnerability to the fragmentation process and the necessity to conserve large remnants to avoid reduction of the high biodiversity of AF birds.  相似文献   

11.
Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter‐trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context‐dependency of the effects of consumer species loss by conducting a 15‐month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat‐dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non‐interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change. Synthesis The roles of species may vary with environmental context, making it difficult to predict how biodiversity loss affects ecosystem functioning across multiple habitats. We tested how natural algal assemblages in two distinct intertidal habitats responded to the removal of different combinations of key consumer species. Despite an initial habitat‐dependent effect of consumer loss, habitat type did not modify the longer‐term responses of algal assemblages to either the identity or number of consumer species removed. Our findings show that, in certain systems, consumer diversity remains a primary driver of ecosystem functioning across widely different environmental contexts.  相似文献   

12.
Land use is a major cause of biodiversity decline worldwide. Agricultural and forestry diversification measures, such as the inclusion of natural elements or diversified crop types, may reduce impacts on biodiversity. However, the extent to which such measures may compensate for the negative impacts of land use remains unknown. To fill that gap, we synthesised data from 99 studies that recorded mammal populations or assemblages in natural reference sites and in cropland and forest plantations, with or without diversification measures. We quantified the responses to diversification measures based on individual species abundance, species richness and assemblage intactness as quantified by the mean species abundance indicator. In cropland with natural elements, mammal species abundance and richness were, on average, similar to natural conditions, while in cropland without natural elements they were reduced by 28% and 34%, respectively. We found that mammal species richness was comparable between diversified forest plantations and natural reference sites, and 32% lower in plantations without natural elements. In both cropland and plantations, assemblage intactness was reduced compared with natural reference conditions, but the reduction was smaller if diversification measures were in place. In addition, we found that responses to land use were modified by species traits and environmental context. While habitat specialist populations were reduced in cropland without diversification and in forest plantations, habitat generalists benefited. Furthermore, assemblages were impacted more by land use in tropical regions and landscapes containing a larger share of (semi)natural habitat compared with temperate regions and more converted landscapes. Given that mammal assemblage intactness is reduced also when diversification measures are in place, special attention should be directed to species that suffer from land use impacts. That said, our results suggest potential for reconciling land use and mammal conservation, provided that the diversification measures do not compromise yield.  相似文献   

13.
Habitat fragmentation has a marked impact on the functional composition of tropical forest tree assemblages, and such change is likely to cascade through other trophic levels. Here, we investigate how habitat fragmentation affects extrafloral nectary (EFN)‐bearing plants and ant functional groups known to attend EFNs in a fragmented landscape of the Atlantic Forest. Extrafloral nectary‐bearing trees were identified in 50 0.1‐ha plots located in forest fragments, edge and interior patches. Ants were surveyed in 30 1‐m2 litter samples in each of 17 forest fragments and in forest interior. Extrafloral nectary‐bearing plants accounted for 19.9% of individuals and 10.5% of species and included both pioneer and shade‐tolerant species similarly rich in the three habitat types. However, shade‐tolerant individuals accounted for >80% of EFN‐bearing plants in forest interior, compared with 2% in forest edge and 29% in fragments. Forest edge and fragment plots had a third fewer EFN‐bearing individuals and species compared with forest interior. This appeared to have important implications for local ant communities as the density of EFN‐bearing trees was the most important variable explaining the species richness of arboreal dominant ants. Our results show that plant loser–winner replacements promoted by forest fragmentation can cascade through higher trophic levels, with implications for forest dynamics and biodiversity conservation.  相似文献   

14.
A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species (n = 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly higher probabilities of local extinction following fragmentation. The majority of these species were predators; 42% of all abundant predator species were significantly more likely to be absent from samples in forest fragments than in undisturbed forest. These figures are regarded as minimum estimates for the entire beetle assemblage because rarer species will inevitably have higher extinction probabilities. Absolute loss of biodiversity will affect ecosystem process rates, but the differential loss of species from trophic groups will have an even greater destabilizing effect on food web structure and ecosystem function.  相似文献   

15.
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.  相似文献   

16.
The positive link between biodiversity and ecosystem functioning is a current paradigm in ecological science. However, little is known of how different attributes of species assemblages condition the quality of many services in real ecosystems affected by human impact. We explore the links between the attributes of a frugivore assemblage and the quantitative and qualitative components of its derived ecosystem service, seed dispersal, along a landscape-scale gradient of anthropogenic forest loss. Both the number and the richness of seeds being dispersed were positively related to frugivore abundance and richness. Seed dispersal quality, determined by the fine-scale spatial patterns of seed deposition, mostly depended on frugivore richness. In fact, richness was the only attribute of the frugivore assemblage affecting the probability of seed dispersal into deforested areas of the landscape. The positive relationships between frugivore richness per se (i.e. independent of frugivore abundance and composition) and all components of seed dispersal suggest the existence of functional complementarity and/or facilitation between frugivores. These links also point to the whole assemblage of frugivores as a conservation target, if we aim to preserve a complete seed dispersal service and, hence, the potential for vegetation regeneration and recovery, in human-impacted landscapes.  相似文献   

17.
Habitat loss and fragmentation are the most important causes of biological diversity loss, changing the properties of the remaining environment. The Neotropical Region is one of the most affected areas due to the conversion of natural habitats into agricultural activities and deforestation. In this region, bats represent almost 50% of all mammal species, reaching the highest taxonomic and functional diversity. Bats are valuable indicators of biodiversity and ecosystem health, but their response to habitat loss and fragmentation was poorly studied in Argentina. The aim of this study was to analyze the response of bat assemblages to habitat alteration in Northwestern Argentina. The specimens were collected in eight different localities, four well-preserved and four disturbed sites of the Yungas Forests. To describe the structure of bat assemblages, rank-abundance curves, species richness and Shannon (H’) and Simpson (D’) diversity indexes were calculated. To test the assemblage variations among sites, PCA and NPMANOVA analysis were performed. After 96 sampling nights, a total of 565 bats from 23 species were captured. A great variation in the assemblage structure was registered, regardless the disturbance level of the sites. These variations were not significantly different according to statistical analysis. The results support the hypothesis that areas with moderate fragmentation can sustain a high diversity of bat species. Moreover, these results showed that consistent responses to landscape composition at the assemblage level are harder to identify in fragmented Neotropical Forests. The responses of bats to habitat alteration tend to be highly species-specific.  相似文献   

18.
Patch size is known to affect biodiversity in fragmented landscapes, but is usually examined in systems where the surrounding matrix habitat is unfavourable. We examined beetle diversity in a floodplain ecosystem that is characterised by naturally occurring grassland patches within a dominant matrix of contrasting yet habitable forest. We asked whether differences in the beetle assemblage between grassland and forest vegetation depended on the area of the grassland patch, which is a function of its flooding frequency and duration: smaller grasslands tend to be higher on the floodplain and are flooded less often and for shorter periods than larger grasslands. We found a negative relationship between grassland area and beetle abundance and species richness, and a positive relationship between grassland area and compositional dissimilarity from the surrounding forest. As expected, we found an overall difference in composition between forest and grassland assemblages, with five beetle species more common in the grasslands. Our study indicates that floodplain grasslands not only support beetle assemblages that are distinct from the surrounding forest, but that assemblages from the larger grasslands are compositionally more distinct than those from smaller grasslands. A likely cause of this pattern is the reduced edge effects and greater environmental contrast between forest and large grasslands that may be exposed to greater variation in local climate. Ongoing changes to flood regimes and potential encroachment of forest plants may decrease grassland area in the future, which may reduce spatial heterogeneity in the insect community in this unique floodplain ecosystem.  相似文献   

19.
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.  相似文献   

20.
The forest canopy is fundamentally important in biodiversity conservation and ecosystem function. Cryptogamic epiphytes are dominant tree bole and canopy elements in temperate and boreal forests, though remain neglected by mainstream forest ecology. This review makes ecological information on cryptogamic epiphytes available to a non-specialist audience, to facilitate their integration in forest biodiversity and ecosystem studies more generally. The review focuses specifically on lichen epiphytes, highlighting their diversity and ecosystem role. A principal task is to explore pattern and process in lichen epiphyte diversity – species composition and richness – therefore demonstrating the utility of lichens as an ecological model system. The review examines key themes in previous research. First, the extensive literature used to resolve species response to, and community turnover along environmental/resource gradients, consistent with the habitat niche. Second, the evidence for dispersal-limitation, which may constrain community composition and richness in isolated habitats. Third, these two processes – the habitat niche and dispersal-limitation – are used to explain stand-scale diversity, in addition to the role of neutral effects (habitat area). Fourth, the review moves from a taxonomic (pattern) to a functional (process) perspective, considering evidence for autogenic succession evidenced by competition and/or facilitation, and non-random trends in life-history traits. This functional approach provides a counter-point to an assumption that lichen epiphyte communities are unsaturated and non-competitive, a situation which would allow the long-term accumulation of species richness with temporal continuity. Finally, the review explores landscape-scale impacts on lichen epiphytes, with recommendations for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号