首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In order to understand the role of microRNAs (miRNAs) in vascular physiopathology, we took advantage of deep-sequencing techniques to accurately and comprehensively profile the entire miRNA population expressed by endothelial cells exposed to hypoxia. SOLiD sequencing of small RNAs derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O2 or normoxia for 24 h yielded more than 22 million reads per library. A customized bioinformatic pipeline identified more than 400 annotated microRNA/microRNA* species with a broad abundance range: miR-21 and miR-126 totaled almost 40% of all miRNAs. A complex repertoire of isomiRs was found, displaying also 5′ variations, potentially affecting target recognition. High-stringency bioinformatic analysis identified microRNA candidates, whose predicted pre-miRNAs folded into a stable hairpin. Validation of a subset by qPCR identified 18 high-confidence novel miRNAs as detectable in independent HUVEC cultures and associated to the RISC complex. The expression of two novel miRNAs was significantly down-modulated by hypoxia, while miR-210 was significantly induced. Gene ontology analysis of their predicted targets revealed a significant association to hypoxia-inducible factor signaling, cardiovascular diseases, and cancer. Overexpression of the novel miRNAs in hypoxic endothelial cells affected cell growth and confirmed the biological relevance of their down-modulation. In conclusion, deep-sequencing accurately profiled known, variant, and novel microRNAs expressed by endothelial cells in normoxia and hypoxia.  相似文献   

4.
MicroRNA-34a regulation of endothelial senescence   总被引:1,自引:0,他引:1  
Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelial cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.  相似文献   

5.
6.
Angiogenesis plays a crucial role during tumorigenesis and much progress has been recently made in elucidating the role of VEGF and other growth factors in the regulation of angiogenesis. Recently, microRNAs (miRNAs) have been shown to modulate a variety of physiogical and pathological processes. We identified a set of differentially expressed miRNAs in microvascular endothelial cells co-cultured with tumour cells. Unexpectedly, most miRNAs were derived from tumour cells, packaged into microvesicles (MVs), and then directly delivered to endothelial cells. Among these miRNAs, we focused on miR-9 due to the strong morphological changes induced in cultured endothelial cells. We found that exogenous miR-9 effectively reduced SOCS5 levels, leading to activated JAK-STAT pathway. This signalling cascade promoted endothelial cell migration and tumour angiogenesis. Remarkably, administration of anti-miR-9 or JAK inhibitors suppressed MV-induced cell migration in vitro and decreased tumour burden in vivo. Collectively, these observations suggest that tumour-secreted miRNAs participate in intercellular communication and function as a novel pro-angiogenic mechanism.  相似文献   

7.
Irradiation exposure is known to induce an inflammatory reaction. Endothelial cells play a crucial role both in the inflammatory process and in radiation damage. Therefore, supernatants and cell lysates of (60)Co-irradiated human umbilical vein endothelial cells (HUVEC) have been assessed for the presence of pro-inflammatory cytokines. After gamma irradiation, interleukin (IL)-1alpha, IL-1beta and tumor necrosis factor (TNF)-alpha remained undetectable in both cell supernatants and cell lysates. However, a dose-dependent increase in the production of IL-6 and IL-8 has been demonstrated up to 6 days after exposure. These data indicate that the pro-inflammatory cytokines IL-6 and IL-8 may be involved in the inflammatory response of vascular endothelium induced by exposure to ionizing radiation.  相似文献   

8.
9.
MicroRNAs, the DNA damage response and cancer   总被引:1,自引:0,他引:1  
  相似文献   

10.
We have previously demonstrated that prostate carcinoma cells exposed to fractionated radiation differentially expressed more genes compared to single-dose radiation. To understand the role of miRNA in regulation of radiation-induced gene expression, we analyzed miRNA expression in LNCaP, PC3 and DU145 prostate cancer cells treated with single-dose radiation and fractionated radiation by microarray. Selected miRNAs were studied in RWPE-1 normal prostate epithelial cells by RT-PCR. Fractionated radiation significantly altered more miRNAs as compared to single-dose radiation. Downregulation of oncomiR-17-92 cluster was observed only in the p53 positive LNCaP and RWPE-1 cells treated with single-dose radiation and fractionated radiation. Comparison of miRNA and mRNA data by IPA target filter analysis revealed an inverse correlation between miR-17-92 cluster and several targets including TP53INP1 in p53 signaling pathway. The base level expressions of these miRNAs were significantly different among the cell lines and did not predict the radiation outcome. Tumor suppressor miR-34a and let-7 miRNAs were upregulated by fractionated radiation in radiosensitive LNCaP (p53 positive) and PC3 (p53-null) cells indicating that radiation-induced miRNA expression may not be regulated by p53 alone. Our data support the potential for using fractionated radiation to induce molecular targets and radiation-induced miRNAs may have a significant role in predicting radiosensitivity.  相似文献   

11.
Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.  相似文献   

12.
13.
Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.  相似文献   

14.
15.
16.
17.
Exposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs. Using this data, we identified miR-21-3p and miR-27a-5p to be induced 3- to 4-fold in response to oxGP and IL-1β treatment compared with control treatment. Transient overexpression of miR-21-3p and miR-27a-5p resulted in the downregulation of 1,253 genes with 922 genes overlapping between the two miRNAs. Gene Ontology functional enrichment analysis predicted that the two miRNAs were involved in the regulation of nuclear factor κB (NF-κB) signaling. Overexpression of these two miRNAs leads to changes in p65 nuclear translocation. Using 3′ untranslated region luciferase assay, we identified 20 genes within the NF-κB signaling cascade as putative targets of miRs-21-3p and -27a-5p, implicating these two miRNAs as modulators of NF-κB signaling in ECs.  相似文献   

18.
19.
Colorectal cancer (CRC) is one of the important malignancies that result in cancer-related deaths worldwide. Multiple lines of evidence have indicated that different responses to therapy in CRC cells led to the failure of the current therapies. Hence, identification of the underlying cellular and molecular pathways involved in the emergence of different responses from CRC cells could contribute to finding and designing new therapeutic platforms to overcome the present limitations. Among the various targets involved in CRC pathogenesis, microRNAs (miRNAs) have key roles in many signaling pathways that are associated with the initiation and progression of CRC. Increasing evidence has confirmed that miRNAs as epigenetic regulators could play critical roles in the response (resistance or sensitivity) to therapy. Cancer stem cells are well-known players in resistance to therapy in CRC. They have been shown to play significant roles via inhibition and activation of many miRNA networks. Hence, miRNAs could be involved in the resistance and sensitivity of therapy in CRC cells via affecting different mechanisms, such as activation of cancer stem cells. Here, we summarized the role of various miRNAs in response to therapy of CRC cells. Moreover, we highlighted the roles of these molecules in the function of cancer stem cells, which are known as important players in the resistance to therapy in CRC.  相似文献   

20.
We demonstrate that human umbilical vein endothelial cells (HUVEC) grown in co-culture (CC) with U87 glioblastoma cells transfected with green fluorescent protein (GFP-U87) exhibit resistance to radiation-mediated apoptosis. cDNA macroarray analysis reveals increases in the accumulation of RNAs for HUVEC genes encoding cell adhesion molecules, growth factor-related proteins, and cell cycle regulatory/DNA repair proteins. An increase in protein expression of integrin alphav, integrin beta1, MAPK(p42), Rad51, DNA-PK(CS), and ataxia telangiectasia gene (ATM) was detected in HUVEC grown in CC with GFP-U87 cells compared with HUVEC grown in mono-culture. Treatment with anti-VEGF antibody decreases the expression of integrin alphav, integrin beta1, DNA-PK(CS) and ATM with a corresponding increase in ionizing radiation (IR)-induced apoptosis. These data support the concept that endothelial cells growing in the tumor microenvironment may develop resistance to cytotoxic therapies due to the up-regulation by tumor cells of endothelial cells genes associated with survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号