首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two structural protein genes, VP19 and VP466, of white spot syndrome virus (WSSV) were cloned and expressed in Sf21 insect cells using a baculovirus expression system for the development of injection and oral feeding vaccines against WSSV for shrimps. The cumulative mortalities of the shrimps vaccinated by the injection of rVP19 and rVP466 at 15 days after the challenge with WSSV were 50.2% and 51.8%, respectively. For the vaccination by oral feeding of rVP19 and rVP466, the cumulative mortalities were 49.2% and 89.2%, respectively. These results show that protection against WSSV can be generated in the shrimp, using the viral structural protein as a protein vaccine.  相似文献   

3.
Syed MS  Kwang J 《PloS one》2011,6(11):e26428
White Spot Syndrome Virus (WSSV) is an infectious pathogen of shrimp and other crustaceans, and neither effective vaccines nor adequate treatments are currently available. WSSV is an enveloped dsDNA virus, and one of its major envelope proteins, VP28, plays a pivotal role in WSSV infection. In an attempt to develop a vaccine against WSSV, we inserted the VP28 gene into a baculovirus vector tailored to express VP28 on the baculovirus surface under the WSSV ie1 promoter (Bac-VP28). The Bac-VP28 incorporated abundant quantity (65.3 μg/ml) of VP28. Shrimp were treated by oral and immersion vaccination with either Bac-VP28 or wild-type baculovirus (Bac-wt). The treatment was followed by challenge with WSSV after 3 and 15 days. Bac-VP28 vaccinated shrimp showed significantly higher survival rates (oral: 81.7% and 76.7%; immersion: 75% and 68.4%) than Bac-wt or non-treated shrimp (100% mortality). To verify the protective effects of Bac-VP28, we examined in vivo expression of VP28 by immunohistochemistry and quantified the WSSV copy number by qPCR. In addition to that, we quantified the expression levels shrimp genes LGBP and STAT by real-time RT-PCR from the samples obtained from Bac-VP28 vaccinated shrimp at different duration of vaccine regime. Our findings indicate that oral vaccination of shrimp with Bac-VP28 is an attractive preventative measure against WSSV infection that can be used in the field.  相似文献   

4.
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate ‘vaccines’, WSSV envelope protein VP28 and formalin‐inactivated WSSV, can provide short‐lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live‐WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV‐intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune‐related, intracellular organelle part, intracellular calcium‐binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV‐intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.  相似文献   

5.
White spot disease is an important viral disease caused by white spot syndrome virus (WSSV) and is responsible for huge economic losses in the shrimp culture industry worldwide. The VP28 gene encoding the most dominant envelope protein of WSSV was used to construct a DNA vaccine. The VP28 gene was cloned in the eukaryotic expression vector pcDNA3.1 and the construct was named as pVP28. The protective efficiency of pVP28 against WSSV was evaluated in Penaeus monodon by intramuscular challenge. In vitro expression of VP28 gene was confirmed in sea bass kidney cell line (SISK) by fluorescence microscopy before administering to shrimp. The distribution of injected pVP28 in different tissues of shrimp was studied and the results revealed the presence of pVP28 in gill, head soft tissue, abdominal muscle, hemolymph, pleopods, hepatopancreas and gut. RT-PCR and fluorescence microscopy analyses showed the expression of pVP28 in all these tissues examined. The results of vaccination trials showed a significantly higher survival rate in shrimp vaccinated with pVP28 (56.6-90%) when compared to control groups (100% mortality). The immunological parameters analyzed in the vaccinated and control groups revealed that the vaccinated shrimp showed significantly high level of prophenoloxidase and superoxide dismutase (SOD) when compared to the control groups. The high levels of prophenoloxidase and superoxide dismutase (SOD) might be responsible for developing resistance against WSSV in DNA vaccinated shrimp.  相似文献   

6.
Aims: To achieve high‐level expression and secretion of active VP28 directed by a processing‐efficient signal peptide in Bacillus subtilis WB600 and exploit the possibility of obtaining an oral vaccine against white spot syndrome virus (WSSV) using vegetative cells or spores as delivery vehicles. Methods and Results: The polymerase chain reaction (PCR)‐amplified vp28 gene was inserted into a shuttle expression vector with a novel signal peptide sequence. After electro‐transformation, time‐courses for recombinant VP28 (rVP28) secretion level in B. subtilis WB600 were analysed. Crayfish were divided into three groups subsequently challenged by 7‐h immersion at different time points after vaccination. Subgroups including 20 inter‐moult crayfish with an average weight of 15 g in triplicate were vaccinated by feeding coated food pellets with vegetative cells or spores for 20 days. Vaccination trials showed that rVP28 by spore delivery induced a higher resistance than using vegetative cells. Challenged at 14 days postvaccination, the relative per cent survival (RPS) values of groups of rVP28‐bv and rVP28‐bs was 51·7% and 78·3%, respectively. Conclusions: The recombinant B. subtilis strain with the ability of high‐level secretion of rVP28 can evoke protection of crayfish against WSSV by oral delivery. Significance and Impact of the Study: Oral vaccination by the B. subtilis vehicle containing VP28 opens a new way for designing practical vaccines to control WSSV.  相似文献   

7.
Lu Y  Liu J  Jin L  Li X  Zhen Y  Xue H  You J  Xu Y 《Fish & shellfish immunology》2008,25(5):604-610
White spot syndrome virus (WSSV) causes high mortality and large economic losses in cultured shrimp. The VP28, VP19 and VP15 genes encode viral structural proteins of WSSV. In this study, hens were immunized with recombinant plasmid (pCI-VP28/VP19/VP15) with linkers or with inactivated WSSV, which used CpG oligodeoxynucleotides (CpG ODNs) and Freund's adjuvant as adjuvant, respectively. Egg yolk immunoglobulin (IgY) from hens immunized with inactivated vaccine and DNA vaccine was obtained, purified and used for protection of Metapenaeus ensis shrimp against WSSV. The data showed that the antibody response of the hens immunized with the DNA vaccine was improved by CpG ODNs as adjuvant, but was still inferior to inactivated WSSV in both sera and egg yolks. Using specific IgY from hens immunized with inactivated WSSV and DNA vaccine to neutralize WSSV, the challenged shrimp showed 73.3% and 33.3% survival, respectively. Thus, the results suggest that passive immunization strategy with IgY will be a valuable method against WSSV infection in shrimp.  相似文献   

8.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

9.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

10.
11.
White spot syndrome virus (WSSV) disease is a major threat to shrimp culture worldwide. Here, we assessed the efficacy of the oral administration of purified recombinant VP28, an envelope protein of WSSV, expressed in a Gram-positive bacterium, Brevibacillus brevis, in providing protection in shrimp, Penaeus japonicus, upon challenge with WSSV. Juvenile shrimp (2-3g in body weight) fed with pellets containing purified recombinant VP28 (50mug/shrimp) for 2weeks showed significantly higher survival rates than control groups when challenged with the virus at 3days after the last day of feeding. However, when shrimp were challenged 2weeks after the last day of feeding, survival rates decreased (33.4% and 24.93%, respectively). Survival rate was dose-dependent, increasing from 60.7 to 80.3% as the dose increased from 1 to 50mug/shrimp. At a dose of 50mug/shrimp, the recombinant protein provided protection as soon as 1day after feeding (72.5% survival). Similar results were obtained with larger-sized shrimp. These results show that recombinant VP28 expressed in a Gram-positive bacterium is a potential oral vaccine against WSSV.  相似文献   

12.
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans.  相似文献   

13.
To improve the immune response in tiger shrimp Penaeus monodon against WSSV infection, juveniles (350 ± 10 mg) were vaccinated with formalin-inactivated WSSV and fed with herbal immunostimulants. The methanolic extracts of herbal immunostimulants such as Acalypha indica, Cynodon dactylon, Picrorrhiza kurrooa, Withania somnifera and Zingiber officinalis were incorporated in formulated diets at different concentrations; 250 (ED(1)), 500 (ED(2)), 1000 (ED(3)) and 2000 (ED(4)) mg kg(-1) of feed and fed for 60 days after vaccination. After 30 and 60 days intervals of feeding, the shrimps were challenged with WSSV, which were isolated and propagated from the infected crustaceans. The shrimps fed with control diets (C(1)) succumbed to death within 5 days after WSSV challenge, when no vaccination and immunostimulations were given. The other control groups (C(2) and C(3)) had slight improvements in all parameters including survival. The percentage survival was significantly (P < 0.05) increased to 30, 50 and 60% in the ED(2), ED(3) and ED(4) diets respectively after 60 days challenging. The better haematological, biochemical and immunological parameters were also found in the herbal extracts supplemented diets fed vaccinated shrimps. The present study revealed that the combined effect of immunostimulation and vaccination helped to boost the immune system against WSSV infection and hence this application can be adopted for shrimp culture.  相似文献   

14.
Infectious bursal disease virus (IBDV) causes a highly immunosuppressive disease in chickens. Currently available, live IBDV vaccines can lead to generation of variant viruses. We have developed an alternative vaccine that will not create variant IBDV. By using the reverse genetics approach, we devised a recombinant Newcastle disease virus (NDV) vector from a commonly used vaccine strain LaSota to express the host-protective immunogen VP2 of a variant IBDV strain GLS-5. The gene encoding the VP2 protein of the IBDV was inserted into the most 3'-proximal locus of a full-length NDV cDNA for high-level expression. We successfully recovered the recombinant virus, rLaSota/VP2. The rLaSota/VP2 was genetically stable, at least up to 12 serial passages in chicken embryos, and was shown to express the VP2 protein. The VP2 protein was not incorporated into the virions of recombinant virus. Recombinant rLaSota/VP2 replicated to a titer similar to that of parental NDV strain LaSota in chicken embryos and cell cultures. To assess protective efficacy of the rLaSota/VP2, 2-day-old specific-pathogen-free chickens were vaccinated with the recombinant virus and challenged with a highly virulent NDV strain Texas GB or IBDV variant strain GLS-5 at 3 weeks postvaccination. Vaccination with rLaSota/VP2 generated antibody responses against both NDV and IBDV and provided 90% protection against NDV and IBDV. Booster immunization induced higher levels of antibody responses against both NDV and IBDV and conferred complete protection against both viruses. These results indicate that the recombinant NDV can be used as a vaccine vector for other avian pathogens.  相似文献   

15.
An in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria to provide a practical control of white spot syndrome virus (WSSV) in shrimp was developed. The bacterially synthesized dsRNA specific to VP28 gene of WSSV promoted gene-specific interference with the WSSV infection in shrimp. Virus infectivity was significantly reduced in WSSV-challenged shrimp injected with VP28-dsRNA and 100% survival was recorded. The inhibition of the expression of WSSV VP28 gene in experimentally challenged animals by VP28-dsRNA was confirmed by RT-PCR and Western blot analyses. Furthermore, we have demonstrated the efficacy of bacterially expressed VP28-dsRNA to silence VP28 gene expression in SISK cell line transfected with eukaryotic expression vector (pcDNA3.1) inserted with VP28 gene of WSSV. The expression level of VP28 gene in SISK cells was determined by fluorescent microscopy and ELISA. The results showed that the expression was significantly reduced in cells transfected with VP28dsRNA, whereas the cells transected with pcDNA-VP28 alone showed higher expression. The in vivo production of dsRNA using prokaryotic expression system could be an alternative to in vitro method for large-scale production of dsRNA corresponding to VP28 gene of WSSV for practical application to control the WSSV in shrimp farming.  相似文献   

16.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Co...  相似文献   

17.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

18.
The vaccine made of recombinant envelope protein (rVp28) of white spot syndrome virus (WSSV) expressed in silkworm (Bombyx mori) pupae using a baculovirus vector was used to investigate the efficacy of oral administration on WSSV disease resistance of Procambarus clarkii. Vaccine was mixed with diet at a ratio of 2% (w/w), and Procambarus clarkii were orally administered throughout 75 days. Vaccination with rVP28 showed the significantly higher cumulative survival compared with positive and negative control (P < 0.05) following an oral challenge on the 35th day post-vaccination (dpv), with PRP values 54.16% and 59.26%, respectively. rVP28 induced higher resistance via IM (intramuscular) injection challenge with WSSV stock, with PRP value of 46.12% and 49.99%, respectively. The survivors were subsequently re-challenged on the 55th dpv. rVP28 induced the significantly higher resistance to oral re-challenge (P < 0.05), with both PRP values 55.80% and 63.16%, respectively. rVP28 induced higher resistance to IM injection re-challenge, with both PRP values 31.25%. A DIG labeled WSSV DNA probe was used to detect WSSV by in situ hybridization. The positive cells were observed in epithelial cells of stomach, hepatopancreas and gut of the infected control crayfish, while negative reaction were observed in the tissues of survivors-vaccinated. These results indicated that vaccination of crayfish with recombinant protein had significant effect on oral infection, and had higher resistance against intramuscular injection challenge. This suggested the protection against WSSV could be induced in crayfish by recombinant protein rVp28 expressed in silkworm pupae.  相似文献   

19.
对虾白斑综合症病毒(WSSV)的致病性强、危害性大、地域分布和宿主范围广泛,目前还不能有效地控制疫情。将含有WSSV囊膜蛋白Vp28基因的重组杆状病毒HyNPV-Vp28感染家蚕(Bombyx mori)蛹,对发病蚕血淋巴进行SDS-PAGE和Western blotting分析,结果表明Vp28在家蚕体内得到了表达。将重组病毒囊膜蛋白rVp28疫苗配制成药饵,持续口服免疫75天,对克氏原螯虾进行预防WSSV,实验虾分为2%重组Vp28疫苗、2%普通蚕蛹组织匀浆(阳性对照)和普通饵料(阴性对照)3个处理组。免疫35天后进行口服攻毒,20天内rVp28疫苗组的累积存活率为63.33%,与阳性和阴性对照比差异显著(P<0.05),PRP分别达54.16%和59.26%;注射攻毒后20 天内rVp28疫苗组的累积存活率与阳性和阴性对照组比差异不显著(P>0.05),PRP分别为46.12% 和49.99%。第55天对存活虾再口服攻毒,20天内rVp28疫苗组与阳性和阴性对照组比累积存活率差异显著(P<0.05),PRP分别为55.80%和63.16%;二次注射攻毒后,rVp28疫苗组的PRP均为31.25%。对vVp28疫苗组存活虾的胃、肠和肝胰腺组织进行病毒的原位杂交检测均呈阴性反应,而对照组死亡虾组织都呈阳性反应。本研究表明,口服免疫家蚕蛹表达的病毒囊膜蛋白Vp28能诱导螯虾产生抗病毒保护作用,对应用疫苗预防对虾的病毒性疾病具有重要意义。  相似文献   

20.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号