首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of plasma membrane on the acriflavine sensitivity of Escherichia coli was studied. (14)C-uracil incorporation into ribonucleic acid fraction by spheroplasts was more sensitive to acriflavine in the acriflavine-sensitive strain (genotype acrA) than in the acriflavine-resistant (genotype acrA(+)) strain. There was no difference between two types of cells in the response to osmotic shock, phage sensitivity, and other treatments used to investigate the structure and stability of cell wall. Differences in the electron-microscopic figures between acrA and acrA(+) cells was found in the plasma membrane, surface area just below the membrane, and ribosomal aggregation, when cells were treated with acriflavine. It is concluded that a primary site of acriflavine action is on the plasma membrane, and the acrA mutation is mediated by it. On the basis of the present results, it is evident that differences in the acriflavine binding and the sensitivity to phenethyl alcohol and sodium dodecyl sulfate between the acrA and acrA(+) strains, previously reported, are attributable to a structural difference in the plasma membrane between the two strains.  相似文献   

2.
Two genetically distinct classes of novobiocin-supersensitive mutants were isolated from Escherichia coli K-12. One class, given the phenotypic name NbsA, lies at 10 min on the E. coli chromosome. The order of the genes in this region, based on transductional analyses, is proC NbsA plsA purE. The second, NbsB, lies at 80 min. The order of the genes in this region, based on transduction analyses, is xyl cysE NbsB pyrE. Both classes of mutants show increased sensitivity to hydrophobic drugs but are different: NbsA cells tend to be more sensitive to cationic agents, whereas NbsB cells show the opposite tendency. The sole detectable biochemical alteration in NbsA strain is greater than 90% reduction in the phosphate content of the lipid A region of the lipopolysaccharide. The NbsB mutation results in lipopolysaccharide that contains primarily the stereoisomer D-glycero-D-mannoheptose, rather than L-glycero-D-mannoheptose, and which contains very little of the distal sugars. Since NbsA strains have apparently normal outer membrane proteins and total cellular phospholipids, changes solely in lipopolysaccharide can increase permeability to certain hydrophobic antibiotics. Complementation studies indicate that the NbsA marker is probably allelic with acrA. In addition, the NbsB marker is genetically and phenotypically similar to the rfaD locus of Salmonella typhimurium. For this reason, the phenotypic designations NbsA and NbsB have been changed to the genotypic designations acrA and rfaD, respectively.  相似文献   

3.
Wild-type strains of Escherichia coli K-12 are resistant to acriflavine. Gene acrA(+) which determines resistance to acriflavine is located near the lac region of the chromosome. This gene determines not only resistance to basic dyes but also resistance to phenethyl alcohol. Acriflavine resistance was transmitted, together with phenethyl alcohol resistance, from a resistant Hfr strain to a sensitive recipient by mating. Reversion of the mutant gene acrA1 (phenotypically acriflavine-sensitive) to acriflavine resistance was accompanied by a change from phenethyl alcohol sensitivity to resistance, and conversely the revertants selected for phenethyl alcohol resistance were resistant to acriflavine. A suppressor mutation, sup-100, closely linked to the acr locus, suppresses the acrA1 gene (phenotypically acriflavine-resistant), but does not determine resistance to phenethyl alcohol and basic dyes other than acriflavine. The genetic change in the locus acrA1 to types resistant to basic dyes and phenethyl alcohol was accompanied by an increase in resistance to sodium dodecyl sulfate, a potent solvent of lipopolysaccharide and lipoprotein. It is suggested that gene acrA determines synthesis of a membrane substance. The system seemed to be affected strongly by the presence of inorganic phosphate.  相似文献   

4.
Plasma membranes of acriflavine-sensitive mutant (acrA) and acriflavine-resistant (acrA+, wild-type and true revertant) Escherichia coli K12 strains treated with acriflavine were observed under the electron microscope by means of the freeze-fracture technique. The plasma membrane of the acrA mutant exhibited a complex lamellar structure at the end of the cell when treated with 20 micrograms acriflavine ml-1. However, the membrane of the acrA+ cells also gave the lamellar complex when treated with a very high concentration of acriflavine (100 micrograms ml-1). The size of the intramembranous particles was not affected by the acriflavine treatments.  相似文献   

5.
In our earlier works we observed high frequency of recombination between two chimeric plasmids of different types, when they were introduced into yeast cells via cotransformation. Incapability of one of these plasmids to replicate autonomously in yeast cell is the necessary condition for such recombination. The high efficiency of this process point to the differences between interplasmid recombination and other types of yeast recombination. In this work, we studied the participation of two genes in the control of interplasmid exchanges. These are RAD52 responsible for normal processes of meiotic and mitotic recombination and highly specific gene FLP located on 2 mkm DNA which specifies site-specific recombination in the region of inverted sequences of this plasmid. The mutation rad52 in the recipient strain was shown to sharply decrease the efficiency of recombination between integrative and episome plasmids during cotransformation. The absence of FLP gene in the recipient strain (cirO) has no influence on this process.  相似文献   

6.
7.
A method of identifying plasmids containing genes responsible for synthesis of nucleotide sugar:lipopolysaccharide glycosyltransferases is described. Hybrid ColE1 plasmids containing random fragments of the chromosome of Escherichia coli K12 were introduced into an indicator strain of Salmonella typhimurium which lacks UDP-glucose:lipopolysaccharide glucosyltransferase I due to an rfaG mutation. Plasmids capable of correcting the transferase defect were identified by their ability to convert the bacteriophage sensitivity pattern of the recipient strain from Ffm-sensitive to Ffm-resistant. Analysis of the lipopolysaccharide of the S. typhimurium/ColE1 hybrid strains and assay of cell extracts defined the new enzyme activities. Two plasmids were identified which carried the rfaG+ gene; one of these plasmids also contained genetic information for a second glucosyltransferase, the E. coli glucosyltransferase II, which normally is not present in S. typhimurium.  相似文献   

8.
Mutations of the Escherichia coli or Salmonella typhimurium supX genes eliminated deoxyribonucleic acid topoisomerase I. Suppression of a supX amber mutation partially restored the topoisomerase. Multicopy plasmids carrying supX+ caused overproduction of topoisomerase. Thus, these supX genes were identified as topA genes which specify deoxyribonucleic acid topoisomerase I.  相似文献   

9.
By in vitro recombination we have constructed hybrid plasmids which can suppress the increased methylmethane sulfonate sensitivity caused by the alkA1 mutation in Escherichia coli. Since the cloned DNA fragment was mapped at 44 to 45 min of the E. coli K12 genetic map, an area where the alkA gene is located, we conclude that the cloned DNA fragment contains the alkA gene itself but not other gene(s) that suppresses the alkA mutation. Specific labeling of plasmid-encoded proteins by the maxicell method revealed that the alkA codes for a polypeptide whose molecular weight is about 30,000. When cells harboring the alkA+ plasmids were grown in the presence of low doses of a simple alkylating agent (adapted condition), the activity of 3-methyladenine DNA glycosylase II was increased. The enzyme activity was copurified with the Mr 30,000 polypeptide. These results indicate that the alkA gene codes for 3-methyladenine DNA glycosylase II. Taking advantage of overproduction of the alkA protein in adapted cells that harbor multicopy plasmids carrying the alkA+ gene, 3-methyladenine DNA glycosylase II has been purified to apparent physical homogeneity.  相似文献   

10.
The acrA mutation in Escherichia coli led to a substantial increase of the acriflavine-binding capacity of the cell, whereas the related mutations acrB (gyrB) and arcC did not. Metal ions such as Na+, K+, Mg2+, Ca2+ and Al3+ effectively released the bound acriflavine, in proportion to their ionic strengths. The presence of cations, in fact, increased the survival fraction of the cells in the acriflavine-containing medium. Polymyxin B, an antibiotic which binds to membrane phospholipid, competed with acriflavine for binding sites. Cell wall digestion by treatment with lysozyme and EDTA slightly decreased the acriflavine-binding capacity. Almost no difference was observed in acriflavine-binding capacity between intact cells and cells from which lipopolysaccharide has been extracted (46.9% removed from the acrA cells and 47.4% from the acrA+ cells). Acriflavine bound to the cells was most effectively extracted by ethanol containing 1% HCl or by 2% (w/v) SDS. The difference in the acriflavine-binding capacity between the acrA and acrA+ cells was also observed in the spheroplasts. These facts indicate a relationship between the acrA gene product and the acriflavine-binding capacity of the cells.  相似文献   

11.
The uptake of ethidium bromide by Escherichia coli K 12 cells has been studied by using 14C-labeled ethidium and spectrofluorometry on three E. coli strains: the first one (AB1157) has an ethidium-resistant phenotype; the second one derives from the first one after a single mutation (at 10 min on the E. coli genetic map) and has an ethidium-sensitive (Ebs) phenotype; the third one is the acrA strain which appeared to have the same phenotype as the Ebs strain. When the cells are in exponential growth, no ethidium enters wild-type cells, and a very limited amount of ethidium enters Ebs and acrA cells. Massive quantities of ethidium enter AB1157, Ebs, and acrA cells treated by uncouplers and respiring Ebs cells treated by the membrane ATPase-inhibitor dicyclohexylcarbodiimide. A small amount of ethidium enters cells treated in M9 succinate medium by metabolic inhibitors such as KCN or cells starved with oxygen in the same M9 medium. The amount of ethidium and ethidium dimer retained at equilibrium by either type of cell, and by cells infected by T5 phage, as well as the kinetics of influx and efflux, has been measured under a variety of situations (membrane energized or not, and/or membrane ATPase inhibited or not). Furthermore, it was shown that ethidium binds to both RNA and DNA when it enters CCCP-treated wild-type E. coli cells, whereas it binds mainly to DNA when it enters Ebs and acrA cells in exponential growth. As it will be discussed, it is difficult to account for the EthBr uptake by invoking only membrane functions and active transport. Therefore, it is proposed that the variations of the nucleic acid accessibility in E. coli cells might play a role in the control of this uptake. Accordingly, in ethidium-sensitive cells, the mutation would have caused a significant part of the chromosomal DNA (10-20%) to become accessible to ethidium. Hansen [Hansen M. T. (1982) Mutat. Res. 106, 209-216], after a study of the photobinding of psoralen to nucleic acids in the acrA mutant, also suggested that DNA environment was modified in acrA cells.  相似文献   

12.
Escherichia coli plasmids containing the rpsL+ gene (Strs phenotype) as the target for mutation were treated in vitro with N-methyl-N-nitrosourea. Following fixation of mutations in E. coli MM294A cells (recA+ Strs), an unselected population of mutant and wild-type plasmids was isolated and transferred into a second host, E. coli 6451 (recA Strr). Strains carrying plasmid-encoded forward mutations were then selected as Strr isolates, while rpsL+ plasmids conferred the dominant Strs phenotype in the second host. Mutation induction and reduced survival of N-methyl-N-nitrosourea-treated plasmids were shown to be dose dependent. Because this system permitted analysis and manipulation of the levels of certain methylated bases produced in vitro by N-methyl-N-nitrosourea, it afforded the opportunity to assess directly the relative roles of these bases and of SOS functions in mutagenesis. The methylated plasmid DNA gave a mutation frequency of 6 X 10(-5) (a 40-fold increase over background) in physiologically normal cells. When the same methylated plasmid was repaired in vitro by using purified O6-methylguanine DNA methyltransferase (to correct O6-methylguanine and O4-methylthymine), no mutations were detected above background levels. In contrast, when the methylated plasmid DNA was introduced into host cells induced by UV light for the SOS functions, rpsL mutagenesis was enhanced eightfold over the level seen without SOS induction. This enhancement of mutagenesis by SOS was unaffected by prior treatment of the DNA with O6-methylguanine DNA methyltransferase. These results demonstrate a predominant mutagenic role for alkylation lesions other than O6-methylguanine or O4-methylthymine when SOS functions are induced. The mutation spectrum of N-methyl-N-nitrosourea under conditions of induced SOS functions revealed a majority of mutagenic events at A . T base pairs.  相似文献   

13.
An effective shotgun cloning procedure was developed for Bacillus megaterium by amplifying gene libraries in Bacillus subtilis. This technique was useful in isolating at least 11 genes from B. megaterium which are involved with cobalamin (vitamin B12) biosynthesis. Amplified plasmid banks were transformed into protoplasts of both a series of Cob mutants blocked before the biosynthesis of cobinamide and Cbl mutants blocked in the conversion of cobinamide into cobalamin. Amplification of gene libraries overcame the cloning barriers inherent in the relatively low protoplast transformation frequency of B. megaterium. A family of plasmids was isolated by complementation of seven different Cob and Cbl mutants. Each plasmid capable of complementing a Cob or Cbl mutant was transformed into each one of the series of Cob and Cbl mutants; many of the plasmids isolated by complementation of one mutation carried genetic activity for complementation of other mutations. By these criteria, four different complementation groups were resolved. At least six genes involved in the biosynthesis of cobinamide are carried on a fragment of DNA approximately 2.7 kilobase pairs in length; other genes involved in the biosynthesis of cobinamide were located in two other complementation groups. The physical and genetic data permitted an ordering of genes within several of the complementation groups. The presence of complementing plasmids in mutants blocked in cobalamin synthesis resulted in restoration of cobalamin biosynthesis.  相似文献   

14.
M T Hansen 《Mutation research》1982,106(2):209-216
The sensitivity to psoralen plus near-ultraviolet radiation (PUVA) was compared in a pair of E. coli strains differing at the acrA locus. Survival was determined for both bacteria and phage lambda. AcrA mutant cells were 40 times more sensitive than wild type to the lethal effect of PUVA. Free lambda phage exposed to PUVA survived as well when plated on acrA mutants as on wild type. In contrast, prophage lambda CI857 ind carried in lysogenic acrA strains was hypersensitive to PUVA. The enhanced sensitivity of bacterial and lambda DNA, when inside acrA cells, was paralleled by an increased photobinding of radiolabelled psoralens in the mutant. Binding was increased specifically to DNA rather than to nucleic acids in general. The difference in psoralen-binding ability determined by the acrA gene persisted after permeabilizing treatment of the cells. The results suggest that the acrA mutation causes an alteration specifically in the environment of the cellular DNA so as to allow increased intercalation and photobinding of psoralens.  相似文献   

15.
To isolate Saccharomyces cerevisiae mutants defective in recombinational DNA repair, we constructed a strain that contains duplicated ura3 alleles that flank LEU2 and ADE5 genes at the ura3 locus on chromosome V. When a HO endonuclease cleavage site is located within one of the ura3 alleles, Ura+ recombination is increased over 100-fold in wild-type strains following HO induction from the GAL1, 10 promoter. This strain was used to screen for mutants that exhibited reduced levels of HO-induced intrachromosomal recombination without significantly affecting the spontaneous frequency of Ura+ recombination. One of the mutations isolated through this screen was found to affect the essential gene CDC1. This mutation, cdc1-100, completely eliminated HO-induced Ura+ recombination yet maintained both spontaneous preinduced recombination levels and cell viability, cdc1-100 mutants were moderately sensitive to killing by methyl methanesulfonate and gamma irradiation. The effect of the cdc1-100 mutation on recombinational double-strand break repair indicates that a recombinationally silent mechanism other than sister chromatid exchange was responsible for the efficient repair of DNA double-strand breaks.  相似文献   

16.
radE, a new radiation-sensitive locus in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Dictyostelium discoideum strain M28, which has been used widely in genetic studies, was found to carry a radiation-sensitive mutation. This allele, termed rad-100, was recessive in heterozygous diploids and mapped in linkage group III. Complementation analysis and survival studies on strains carrying rad-100 suggested that this allele defines a new radiation-sensitive locus in D. discoideum, and this locus has been designated radE. radE strains were moderately sensitive to ultraviolet light (D10 90 J m-2) and slightly sensitive to 137Cs gamma rays D10 255 krad). radE strains also exhibited increased sensitivity to killing by N-methyl-N'-nitro-N-nitrosoguanidine but not by other alkylating agents such as ethyl methanesulphonate or methyl methanesulphonate. The frequency of spontaneous methanol-resistant (acrA) mutants was approximately the same in cultures of radE and radE+ strains. However, when amoebae of these strains were irradiated with ultraviolet light, the frequency of induced mutants was significantly lower in cultures of the radE strain. Furthermore, when amoebae of wild-type strain NC4 were plated in the presence of caffeine after ultraviolet-irradiation, the survival curves were very similar to the curves obtained for amoebae of radE strains in the presence or in the absence of caffeine. These results suggest that the radE100 mutation and caffeine interfere with an error-prone DNA repair pathway in D. discoideum.  相似文献   

17.
PURPOSE OF REVIEW: In this review we compare the phenotype and lipoprotein abnormalities of some patients who were found to carry mutations in the APOA5 gene predicted to result in apolipoprotein A-V deficiency. RECENT FINDINGS: The sequencing of the APOA5 gene in patients with primary hypertriglyceridemia, in whom mutations of the LPL and APOC2 genes had been excluded, led to the identification of four families with two different mutations in this gene predicted to result in truncated apolipoprotein A-V. The first mutation (Q148X) was found in a homozygous state in a child with severe type V hyperlipidemia, some clinical manifestations of chylomicronemia syndrome and a slight reduction in plasma postheparin lipoprotein lipase activity. Carriers of a different mutation (Q139X) were recently reported. Four Q139X heterozygotes had type V hyperlipidemia and markedly reduced plasma postheparin lipoprotein lipase activity. The hypertriglyceridemic Q139X heterozygote had other factors that could have contributed to hypertriglyceridemia. ApoB-100 kinetic studies in hypertriglyceridemic Q139X heterozygotes revealed an impairment of very low-density lipoprotein catabolism. SUMMARY: Mutations in the APOA5 gene, leading to truncated apolipoprotein A-V devoid of lipid-binding domains located in the carboxy-terminal end of the protein, if present in the homozygous state, are expected to cause severe type V hyperlipidemia in patients with no mutations in LPL or APOC2 genes. If present in the heterozygous state, these mutations predispose to hypertriglyceridemia in combination with other genetic factors or pathological conditions.  相似文献   

18.
Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter).  相似文献   

19.
20.
Some mutants and stock strains of Escherichia coli K12 were sensitive to acriflavine in the presence of inorganic phosphate but were resistant to acriflavine in its absence. They mutated spontaneously to resistance to acriflavine plus phosphate. The synergistic effect of phosphate on acriflavine sensitivity was increased at high pH values. Genetic analysis suggested that the mutations occurred in the gene acrA. Electron microscopic observation suggested that the presence of acriflavine plus phosphate affected the structure of the plasma membrane and the cytoplasm under it. This structural alteration was not caused by acriflavine alone. Acridine orange plus phosphate can more effectively eliminate the plasmid F8-gal+ than acridine orange alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号