首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATP-binding cassette transporters are involved in the active transport of a wide variety of metabolites in prokaryotes and eukaryotes. One subfamily, the Pleiotropic Drug Resistance (PDR) transporters, or full-size ABCG transporters, are found only in fungi and plants. NtPDR1 was originally identified in Nicotiana tabacum suspension cells (BY2), in which its expression was induced by microbial elicitors. To obtain information on its expression in plants, we generated NtPDR1-specific antibodies and, using Western blotting, found that this transporter is localized in roots, leaves, and flowers and this was confirmed in transgenic plants expressing the ß-glucuronidase reporter gene fused to the NtPDR1 promoter region. Expression was seen in the lateral roots and in the long glandular trichomes of the leaves, stem, and flowers. Western blot analysis and in situ immunolocalization showed NtPDR1 to be localized in the plasma membrane. Induction of NtPDR1 expression by various compounds was tested in N. tabacum BY2 cells. Induction of expression was observed with the hormones methyl jasmonate and naphthalene acetic acid and diterpenes. Constitutive ectopic expression of NtPDR1 in N. tabacum BY2 cells resulted in increased resistance to several diterpenes. Transport tests directly demonstrated the ability of NtPDR1 to transport diterpenes. These data suggest that NtPDR1 is involved in plant defense through diterpene transport.  相似文献   

2.
3.
4.
5.
Zhou D  Song ZH 《FEBS letters》2002,518(1-3):164-168
We isolated an INF1 elicitin-inducible cDNA encoding a pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter homolog (NtPDR1) in suspension-cultured tobacco Bright Yellow-2 (BY-2) cells by application of differential display PCR. The NtPDR1 (Nicotiana tabacum PDR protein 1) gene also encodes a 162 kDa protein that includes two putative hydrophilic domains containing the ABC signature motif and two putative hydrophobic domains. Expression of the NtPDR1 gene was rapidly and strongly activated by treatment of BY-2 cells with INF1 elicitin. Further, treatment of BY-2 cells with flagellin, a bacterial proteinaceous hypersensitive reaction elicitor, or yeast extract, a general elicitor, also induced NtPDR1 gene expression. These results indicate that NtPDR1 may be involved in the general defense response in tobacco. This is the first report that microbial elicitors induce the expression of a plant ABC transporter gene.  相似文献   

6.
7.
Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non‐phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid‐to‐galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum‐localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2‐overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.  相似文献   

8.
9.
10.
11.
Induction of secreted and intracellular purple acid phosphatases (PAPs; EC 3.1.3.2) is widely recognized as an adaptation of plants to phosphorus (P) deficiency. The secretion of PAPs plays important roles in P acquisition. However, little is known about the functions of intracellular PAP in plants and nodules. In this study, we identified a novel PAP gene GmPAP21 in soybean. Expression of GmPAP21 was induced by P limitation in nodules, roots and old leaves, and increased in roots with increasing duration of P starvation. Furthermore, the induction of GmPAP21 in nodules and roots was more intensive than in leaves in both P‐efficient genotype HN89 and P‐inefficient genotype HN112 in response to P starvation, and the relative expression in the leaves and nodules of HN89 was significantly greater than that of HN112 after P deficiency treatment. Further functional analyses showed that over‐expressing GmPAP21 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under P starvation condition, indicating that GmPAP21 plays an important role in P utilization. Moreover, GUS expression driven by GmPAP21 promoter was shown in the nodules besides roots. Overexpression of GmPAP21 in transgenic soybean significantly inhibited nodule growth, and thereby affected plant growth after inoculation with rhizobia. This suggests that GmPAP21 is also possibly involved in regulating P metabolism in nodules. Taken together, our results suggest that GmPAP21 is a novel plant PAP that functions in the adaptation of soybean to P starvation, possibly through its involvement in P recycling in plants and P metabolism in nodules.  相似文献   

12.
13.
14.
15.
16.
  • Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long‐distance signalling molecules.
  • We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild‐type and hen1‐6 mutants to assess the mobility of several phosphate starvation‐responsive microRNA species.
  • In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate‐responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile.
  • The results suggest that long‐distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root‐localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
  相似文献   

17.
We characterized the function of two rice phosphate (Pi) transporters: OsPHT1;9 (OsPT9) and OsPHT1;10 (OsPT10). OsPT9 and OsPT10 were expressed in the root epidermis, root hairs and lateral roots, with their expression being specifically induced by Pi starvation. In leaves, expression of the two genes was observed in both mesophyll and vasculature. High‐affinity Km values for Pi transport of OsPT9 and OsPT10 were determined by yeast experiments and two‐electrode voltage clamp analysis of anion transport in Xenopus oocytes expressing OsPT9 and OsPT10. Pi uptake and Pi concentrations in transgenic plants harbouring overexpressed OsPT9 and OsPT10 were determined by Pi concentration analysis and 33P‐labelled Pi uptake rate analysis. Significantly higher Pi uptake rates in transgenic plants compared with wild‐type plants were observed under both high‐Pi and low‐Pi solution culture conditions. Conversely, although no alterations in Pi concentration were found in OsPT9 or OsPT10 knockdown plants, a significant reduction in Pi concentration in both shoots and roots was observed in double‐knockdown plants grown under both high‐ and low‐Pi conditions. Taken together, our results suggest that OsPT9 and OsPT10 redundantly function in Pi uptake.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号