首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

2.
The expressions of nine nitrogen assimilation‐associated genes, NRT2, NAR1, NIA2, NIR, GLN2, GLSF, GSN1, GDH, and AAT2, in the microalga Isochrysis zhangjiangensis were investigated to unveil the effects of limitations of various nitrogen sources (NaNO3, NH4Cl, NaNO2, and an amino acid mixture) on the microalgae. The results demonstrated that the NRT2, NAR1, GLN2, GSN1, and AAT2 genes were highly expressed in lipid‐rich microalgae under inorganic nitrogen‐deficient conditions and they decreased after nitrogen resupply. Significant increases in the expressions of NAR1, GLN2, and GLSF were found in nitrate‐depleted microalgae, whereas significant increases in the expressions of NRT2, NAR1, GLN2, and GSN1 were found in nitrite‐depleted microalgae. Significant increases in the expressions of only NRT2 and GSN1 were found in ammonium‐depleted microalgae (P < 0.05). Except for the NRT2, other genes were expressed at lower levels under amino acid‐deficient conditions compared with amino acid‐sufficient controls. The expression of the NIA2 gene decreased in nitrogen‐depleted microalgae regardless of the initial nitrogen source. However, the results of fatty acid analyses showed that the features of fatty acid profiles followed a similar mode, in which the percentage compositions of C16:0 and C18:1Δ9 increased in nitrogen‐depleted cells and that of C16:1Δ9, C18:3Δ9,12,15, C18:4Δ6,9,12,15, and C18:5Δ3,6,9,12,15 decreased, regardless of the type of nitrogen source applied. It was also found that the epiphytic bacterium Alteromonas macleodii played a particularly important role in releasing microalgae from the stress of amino acid deficiency. These findings also provide a foundation for regulating microalgal lipid production through manipulation of the nitrogen assimilation‐associated genes.  相似文献   

3.
As third generation feedstock, microalgae are microorganisms that can grow only in the optimum conditions. There are parameters including the concentration of macro and microelements in nutrient solution, pH, temperature and light intensity that have significant impact on microalgal growth. In recent years, various sensing devices have been developed for sensitive measurement of these parameters during microalgal growth. In this study, a new potentiometric nitrate selective sensor was developed to indicate the nitrate uptake of microalgae and the effect of nitrate nutrient on microalgal growth, specifically, and this sensor was successfully applied to determine nitrate concentration in medium during microalgal growth. Moreover, the effects of nitrate, carbonate and phosphate concentration in the growth medium on biomass production of Chlorella minutissima were investigated by using Box–Behnken design method, and optimum conditions were determined for the highest biomass production of microalgae. As a result of the experiments, it was seen that the highest C. minutissima production was achieved using the medium consist of 2.63 g/L NaNO3, 0.35 g/L Na2CO3 and 0.4 g/L KH2PO4. Statistically, it was observed that there was a proportional relationship between the microalgae production and investigated parameters such as carbon, nitrogen and phosphate amounts of culture mediums. The electrode showed a wide linear range between 1.0 × 10−1 and 5.0 × 10−5 M with a detection limit of the 5 × 10−6 M and the response time was found as 10 s. The results showed that developed nitrate selective sensor could be successfully applied for continuous measurement of nitrate in microalgal productions at reduced cost.  相似文献   

4.
There has been growing interest in using microalgae as production hosts for a wide range of value-added compounds. However, microalgal genetic improvement is impeded by lack of genetic tools to concurrently control multiple genes. Here, we identified two novel strong promoters, designated Pt202 and Pt667, and delineated their potential role on simultaneously driving the expression of key lipogenic genes in Phaeodactylum tricornutum. In silico analyses of the identified promoter sequences predicted the presence of essential core cis elements such as TATA and CAAT boxes. Regulatory role of the promoters was preliminarily assessed by using GUS reporter which demonstrated strong GUS expression. Thereafter, two key lipogenic genes including malic enzyme (PtME) and 5-desaturase (PtD5b), were overexpressed by the two promoters Pt202 and Pt667, respectively, in P. tricornutum. Combinatorial gene overexpression did not impair general physiological performance, meanwhile neutral lipid content was remarkably increased by 2.4-fold. GC-MS analysis of fatty acid methyl esters revealed that eicosapentaenoic acid (EPA; C20:5) was increased significantly. The findings augment a crucial kit to microalgal genetic tools that could facilitate the multiple-gene expression driven by various promoters, and promote microalgae for industrial bioproduction.  相似文献   

5.

Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m−2 s−1 or 1000 μmol photons m−2 s−1), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m−2 d−1) was observed at a light intensity of 600 μmol photons m−2 s−1 and 2% CO2. The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m−2 s−1 and an ambient CO2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10–12 g m−2 d−1, respectively. When compared to the performance of similar cultivation systems (15–30 g m−2 d−1), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  相似文献   

6.
Mass culture of microalgae is a potential alternative to cultivation of terrestrial crops for bioenergy production. However, microalgae require nitrogen fertiliser in quantities much higher than plants, and this has important consequences for the energy balance of these systems. The effect of nitrogen fertiliser supplied to microalgal bubble-column photobioreactor cultures was investigated using different nitrogen sources (nitrate, urea, ammonium) and culture conditions (air, 12% CO2). In 20 L cultivations, maximum biomass productivity for Chlorella vulgaris cultivated using nitrate and urea was 0.046 and 0.053 g L−1 day−1, respectively. Maximum biomass productivity for Dunaliella tertiolecta cultivated using nitrate, urea and ammonium was 0.033, 0.038 and 0.038 g L−1 day−1, respectively. In intensive bubble-column photobioreactors using 12% CO2, maximum productivity reached 0.60 and 0.83 g L−1 day−1 for C. vulgaris and D. tertiolecta, respectively. Recycling of nitrogen within the photobioreactor system via algal exudation of nitrogenous compounds and bacterial activity was identified as a potentially important process. The energetic penalty incurred by supply of artificial nitrogen fertilisers, phosphorus, power and CO2 to microalgal photobioreactors was investigated, although analysis of all energy burdens from biomass production to usable energy carriers was not conducted. After subtraction of the power, nitrogen and phosphorus energy burdens, maximum net energy ratios for C. vulgaris and D. tertiolecta cultivated in bubble columns were 1.82 and 2.10. Assuming CO2 was also required from a manufactured source, the net energy ratio decreased to 0.09 and 0.11 for C. vulgaris and D. tertiolecta, so that biomass production in this scenario was unsustainable. Although supply of nitrogen is unlikely to be the most energetically costly factor in sparged photobioreactor designs, it is still a very significant penalty. There is a need to optimise both cultivation strategies and recycling of nitrogen in order to improve performance. Data are supported by measurements including biochemical properties (lipid, protein, heating value) and bacterial number by epifluorescence microscopy.  相似文献   

7.
A rapid method for harvesting and immobilization of oleaginous microalgae using pellet-forming filamentous fungi was developed. The suitable conditions for pellet formation by filamentous fungi were determined. Among the strains tested, Trichoderma reesei QM 9414 showed superior pellet forming ability. Its pellets were used to harvest oleaginous microalga Scenedesmus sp. With increasing volume ratio of fungal pellets to microalgae culture up to 1:2, >94% of microalgal cells were rapidly harvested within 10 min. The ratio of fungal pellets could manipulate both harvesting time and initial concentration of microalgal cells in the pellets. The microalgae–fungal pellets were successfully used as immobilized cells for effective phytoremediation of secondary effluent from seafood processing plants under nonsterile condition. The chemical oxygen demand, total nitrogen, and total phosphorus removal were >74%, >44%, and >93%, respectively. The scanning electron microscopy showed that the microalgal cells were not only entrapped in the pellets but also got attached to the fungal hyphae with sticky exopolysaccharides, possibly secreted by the fungi. The extracted lipids from the pellets were mainly composed of C16–C18 (>83%) with their suitability as biodiesel feedstocks. This study has shown the promising strategy to rapidly harvest and immobilize microalgal cells and the possible application in phytoremediation of industrial effluent.  相似文献   

8.
The freeze-dried (extracted and non-extracted) biomass of 15 microalgal species grown in axenic mass culture and belonging to the Cyanobacteria, Chloro-, Eustigmato-, Phaeo-, Rhodo- and Tribophyceae were investigated for their ability to adsorb cadmium (Cd) ions from aqueous solutions. For comparison, other standard adsorbing materials (activated carbon, silica gel, siliceous earth) were included in the studies. The biomass of 11 microalgae exhibited a higher Cd adsorption than the standard materials. Extraction of the algal biomass increased the Cd adsorption capability of some, but not all microalgae. High Cd adsorption was found inAnabaena lutea, Nodularia harveyana, andNostoc commune (Cyanobacteria),Chlamydomonas sp. (Chlorophyceae),Bumilleriopsis filiformis (Tribophyceae), and inEctocarpus siliculosus, Halopteris scoparia andSpermatochnus paradoxus (Phaeophyceae). The specific surface (m2 cm–3) of the various microalgae was determined by means of laser diffractometry.Anabaena inaequalis andA. lutea (Cyanobacteria) and the Phaeophyceae had especially high Cd adsorption per surface unit. Most of the Cd adsorbed to these various materials could be desorbed subsequently with diluted mineral acid (pH 2).  相似文献   

9.

Background

Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation.

Results

We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis.

Conclusions

We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.  相似文献   

10.
Although microalgae are considered as a promising feedstock for biofuels, the energy efficiency of the production process needs to be significantly improved. Due to their small size and low concentration in the culture medium, cost‐efficient harvesting of microalgae is a major challenge. In this study, the use of electro‐coagulation–flocculation (ECF) as a method for harvesting a freshwater (Chlorella vulgaris) and a marine (Phaeodactylum tricornutum) microalgal species is evaluated. ECF was shown to be more efficient using an aluminum anode than using an iron anode. Furthermore, it could be concluded that the efficiency of the ECF process can be substantially improved by reducing the initial pH and by increasing the turbulence in the microalgal suspension. Although higher current densities resulted in a more rapid flocculation of the microalgal suspension, power consumption, expressed per kg of microalgae harvested, and release of aluminum were lower when a lower current density was used. The aluminum content of the harvested microalgal biomass was less than 1% while the aluminum concentration in the process water was below 2 mg L−1. Under optimal conditions, power consumption of the ECF process was around 2 kWh kg−1 of microalgal biomass harvested for Chlorella vulgaris and ca. 0.3 kWh kg−1 for Phaeodactylum tricornutum. Compared to centrifugation, ECF is thus more energy efficient. Because of the lower power consumption of ECF in seawater, ECF is a particularly attractive method for harvesting marine microalgae. Biotechnol. Bioeng. 2011;108: 2320–2329. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Human activities in coastal areas frequently cause loss of benthic macrophytes (e.g. seagrasses) and concomitant increases in microalgal production through eutrophication. Whether such changes translate into shifts in the composition of sediment detritus is largely unknown, yet such changes could impact the role these ecosystems play in sequestrating CO2. We reconstructed the sedimentary records of cores taken from two sites within Botany Bay, Sydney – the site of European settlement of Australia – to look for human‐induced changes in dominant sources of detritus in this estuary. Cores covered a period from the present day back to the middle Holocene (~6000 years) according to 210Pb profiles and radiocarbon (14C) dating. Depositional histories at both sites could not be characterized by a linear sedimentation rate; sedimentation rates in the last 30–50 years were considerably higher than during the rest of the Holocene. C : N ratios declined and began to exhibit a microalgal source signature from around the time of European settlement, which could be explained by increased nutrient flows into the Bay caused by anthropogenic activity. Analysis of stable isotopic ratios of 12C/13C showed that the relative contribution of seagrass and C3 terrestrial plants (mangroves, saltmarsh) to detritus declined around the time of rapid industrial expansion (~1950s), coinciding with an increase in the contribution of microalgal sources. We conclude that the relative contribution of microalgae to detritus has increased within Botany Bay, and that this shift is the sign of increased industrialization and concomitant eutrophication. Given the lower carbon burial efficiencies of microalgae (~0.1%) relative to seagrasses and C3 terrestrial plants (up to 10%), such changes represent a substantial weakening of the carbon sink potential of Botany Bay – this occurrence is likely to be common to human‐impacted estuaries, and has consequences for the role these systems play in helping to mitigate climate change.  相似文献   

12.
Native polyculture microalgae is a promising scheme to produce microalgal biomass as biofuel feedstock in an open raceway pond. However, predicting biomass productivity of native polycultures microalgae is incredibly complicated. Therefore, developing polyculture growth model to forecast biomass yield is indispensable for commercial-scale production. This research aims to develop a polyculture growth model for native microalgal communities in the Minamisoma algae plant and to estimate biomass and biocrude oil productivity in a semicontinuous open raceway pond. The model was built based on monoculture growth of polyculture species and it is later formulated using species growth, polyculture factor (kvalue), initial concentration, light intensity, and temperature. In order to calculate species growth, a simplified Monod model was applied. In the simulation, 115 samples of the 2014–2015 field dataset were used for model training, and 70 samples of the 2017 field dataset were used for model validation. The model simulation on biomass concentration showed that the polyculture growth model with kvalue had a root-mean-square error of 0.12, whereas model validation provided a better result with a root-mean-square error of 0.08. Biomass productivity forecast showed maximum productivity of 18.87 g/m2/d in June with an annual average of 13.59 g/m2/d. Biocrude oil yield forecast indicated that hydrothermal liquefaction process was more suitable with a maximum productivity of 0.59 g/m2/d compared with solvent extraction which was only 0.19 g/m2/d. With satisfactory root-mean-square errors less than 0.3, this polyculture growth model can be applied to forecast the productivity of native microalgae.  相似文献   

13.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

14.
Xu L  Guo C  Wang F  Zheng S  Liu CZ 《Bioresource technology》2011,102(21):10047-10051
A simple and rapid harvesting method by in situ magnetic separation with naked Fe3O4 nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe3O4 nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe3O4 nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.  相似文献   

15.
In a concerted effort to apply epipsammic microalgae indices as a biological indicator of crude oil pollution and natural remediation in a tropical estuarine environment, the direct effect of a recent oil spill on the abundance of microalgae in the coastal shore of the Qua Iboe Estuary was investigated. A significant negative effect of contamination on the salinity, acidity and nutritive salts (CO32−, Cl, and SO42−) levels of the sandy beach soil was observed. The Biological Index of Pollution (BIP) of the beach soil was raised from the previous slightly polluted level (18%) to 75, 88, 45 and 41% after contamination, at sampling distances of 5.5, 9.5, 11.5 and 15 m from the barrier used for pollution control. These corresponded with increases in the density of microalgae with distance from the barrier. This implies that the effect of oil pollution was more severe on microalgal cells that are close to the barrier. The overall effect was a distance-influenced reduction in the regeneration capabilities of the epipsammic microalgae. Some microalgal species, particularly the cyanobacterial species of Aphanizomenon flos-aquae, Lyngbya majusculata,and a centric diatom Actinoptychus undulatus may have been exposed to contamination levels exceeding normal homeostasis and compensation. They lost their existence in the sandy beach, and their absence is recommended for use as an indicator of the short term effect of oil pollution in coastal sandy beaches in a tropical estuarine environment.  相似文献   

16.
Today's world faces the dual pressure of carbon dioxide (CO2) emission reduction and an energy crisis. Microalgae, which can use solar energy to convert CO2 to organic matter, have emerged as a promising and renewable cell factory for producing nutrients, biofuels, and various high value-added compounds (HVACs). They possess numerous advantages, such as high photosynthetic efficiency, fast growth rate, and use of agro-industrial waste and nonagricultural land for cultivation. Microalgae can also effectively remove eutrophic elements (e.g., nitrogen and phosphorus) from wastewater and atmospheric pollutants (e.g., SOx and NOx) from flue gas, thus providing great environmental benefits. However, microalgae-based production often faces low productivity, limiting applicability in industrial settings. Genetic and metabolic modifications of certain microalgal strains have proven effective in improving productivity. Here, we review the latest developments regarding the microalgae-based production of platform compounds, biofuels, and other HVACs. Although still in the early exploration stage, the rapid development of gene editing tools, a deeper understanding of the metabolic pathways of microalgae and their regulatory mechanisms, and further optimization of cultivation procedures and photosynthetic efficiency can eventually enable the launch of microalgae-based biomanufacturing for green industrial production. Therefore, this technology is strategically important for solving the current energy crisis problems of excessive CO2 emissions and environmental pollution. This review provides information about the advancement and development of microalgae-based production over the past two decades and discusses possible future directions in the field.  相似文献   

17.
《Biotechnology advances》2019,37(8):107444
Photosynthetic biogas upgrading using microalgae provides a promising alternative to commercial upgrading processes as it allows for carbon capture and re-use, improving the sustainability of the process in a circular economy system. A two-step absorption column-photobioreactor system employing alkaline carbonate solution and flat plate photobioreactors is proposed. Together with process optimisation, the choice of microalgae species is vital to ensure continuous performance with optimal efficiency. In this paper, in addition to critically assessing the system design and operation conditions for optimisation, five criteria are selected for choosing optimal microalgae species for biogas upgrading. These include: ability for mixotrophic growth; high pH tolerance; external carbonic anhydrase activity; high CO2 tolerance; and ease of harvesting. Based on such criteria, five common microalgae species were identified as potential candidates. Of these, Spirulina platensis is deemed the most favourable species. An industrial perspective of the technology further reveals the significant challenges for successful commercial application of microalgal upgrading of biogas, including: a significant land footprint; need for decreasing microalgae solution recirculation rate; and selecting preferable microalgae utilisation pathway.  相似文献   

18.
The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism.  相似文献   

19.
There is continuous interest in many countries in maintaining and manipulating the rich ecological value of hypersaline ecosystems for aquaculture. The Megalon Embolon solar saltworks (northern Greece) were studied in sites of increasing salinity of 60–144 ppt to evaluate Dunaliella salina abundance and microalgal composition, in relation to physical and chemical parameters. Cluster and ordination analyses were performed based on the biotic and abiotic data matrices. Using fresh aliquots from 60 and 140 ppt salinity waters, phytoplankton performance was appraised with flask cultures in the laboratory by varying the inorganic PO4-P concentration at 23 °C and 30 °C. At the saltworks, among the most abundant microalgae identified were species of the genera Dunaliella, Chlamydomonas, Amphora, Navicula, and Nitzschia. Dunaliella salina populations were predominant comprising 5–22% of the total microalgal assemblages during spring, but only 0.3–1.0% during the summer, when grazing by Artemia parthenogenetica and Fabrea salina was intense. D. salina cell density in April–July was in the range of 0.4–12.5 × 106 L−1 with typical densities of 1.5–4.5 × 106 L−1. Overall, microalgal densities were high in salinities of ≥100 ppt when inorganic-P concentrations were ≥0.20 mg L−1 within saltworks waters. Multivariate analysis of species abundance showed that algal growth responses were primarily related to variation in salinity and inorganic-P concentrations, but also to NO3-N concentration. In the laboratory, experiments indicated effective fertilization and denser microalgal growth under high inorganic PO4-P applications (4.0 and 8.0 mg L−1) at 60 ppt salinity and 23 °C. The lower PO4-P applications (0.6–2.0 mg L−1) were more effective at 60 ppt salinity and 30 °C. At 140 ppt salinity, microalgal growth response was less obvious at any of the corresponding phosphorus concentrations or temperatures. In both salinity experiments, Dunaliella salina bloomed easily and was predominant among the microalgae. Our observations indicate that Dunaliella salina populations and the overall rich microalgal profile of the saltworks, along with their performance in laboratory mono–and mixed cultures hold promise for mass cultivation within the M. Embolon saltworks basins.  相似文献   

20.
The problem of climate change arising mainly from CO2 emission is currently a critical environmental issue. Biofixation using microalgae has recently become an attractive approach to CO2 capture and recycling with additional benefits of downstream utilization and applications of the resulting microalgal biomass. This review summarizes the history and strategies of microalgal mitigation of CO2 emissions, photobioreactor systems used to cultivate microalgae for CO2 fixation, current microalgae harvesting methods, as well as applications of valuable by-products. It is of importance to select appropriate microalgal species to achieve an efficient and economically feasible CO2-emission mitigation process. The desired microalgae species should have a high growth rate, high CO2 fixation ability, low contamination risk, low operation cost, be easy to harvest and rich in valuable components in their biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号