首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In unpredictably varying environments, strategies that have a reduced variance in fitness can invade a population consisting of individuals that on average do better. Such strategies 'hedge their evolutionary bets' against the variability of the environment. The idea of bet-hedging arises from the fact that appropriate measure of long-term fitness is sensitive to variance, leading to the potential for strategies with a reduced mean fitness to invade and increase in frequency. Our aim is to review the conceptual foundation of bet-hedging as a mechanism that influences short- and long-term evolutionary processes. We do so by presenting a general model showing how evolutionary changes are affected by variance in fitness and how genotypic variance in fitness can be separated into variance in fitness at the level of the individuals and correlations in fitness among them. By breaking down genotypic fitness variance in this way the traditional divisions between conservative and diversified strategies are more easily intuited, and it is also shown that this division can be considered a false dichotomy, and is better viewed as two extreme points on a continuum. The model also sheds light on the ideas of within- and between-generation bet-hedging, which can also be generalized to be seen as two ends of a different continuum. We use a simple example to illustrate the virtues of our general model, as well as discuss the implications for systems where bet-hedging has been invoked as an explanation.  相似文献   

2.
Under global climate change, adaptation to new conditions is crucial for plant species persistence. This requires the ability to evolve in traits that are correlated with changing climatic variables. We studied between‐year seed dormancy, which correlates with environmental variability, and tested for clinal trends in its evolvability along an aridity gradient in Israel. We conducted a germination experiment under five irrigation levels with two dryland winter annuals (Biscutella didyma, Bromus fasciculatus) from four sites along the gradient. Species differed in means and evolvability of dormancy. Biscutella had high dormancy, which significantly increased with aridity but decreased with higher irrigation. In Bromus, dormancy was low, similar among populations, and only marginally affected by irrigation. Evolvability in Biscutella was high and varied among populations, without a clinal trend along the gradient. Conversely, in Bromus, trait evolvability was low and declined with increasing aridity. We argue that changes in evolvability along climatic gradients depend on the relative intensity of stabilizing selection. This may be high in Bromus and not only depends on environmental stress, but also on variability. Our findings point to the importance of measuring evolvability of climate‐related traits across different natural and artificial environments and for many coexisting species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 924–934.  相似文献   

3.
Bacteria have developed an impressive ability to survive and propagate in highly diverse and changing environments by evolving phenotypic heterogeneity. Phenotypic heterogeneity ensures that a subpopulation is well prepared for environmental changes. The expression bet hedging is commonly (but often incorrectly) used by molecular biologists to describe any observed phenotypic heterogeneity. In evolutionary biology, however, bet hedging denotes a risk-spreading strategy displayed by isogenic populations that evolved in unpredictably changing environments. Opposed to other survival strategies, bet hedging evolves because the selection environment changes and favours different phenotypes at different times. Consequently, in bet hedging populations all phenotypes perform differently well at any time, depending on the selection pressures present. Moreover, bet hedging is the only strategy in which temporal variance of offspring numbers per individual is minimized. Our paper aims to provide a guide for the correct use of the term bet hedging in molecular biology.  相似文献   

4.
Diversified bet‐hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life‐history traits defined as diversified bet‐hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet‐hedging dormancy strategies in a metapopulation using a two‐patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet‐hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet‐hedging strategies that we hope will encourage new empirical studies of this topic.  相似文献   

5.
Bacterial populations can use bet‐hedging strategies to cope with rapidly changing environments. One example is non‐growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact‐dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI‐mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon‐mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density‐dependent bet‐hedging strategy, where the fraction of non‐growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts.  相似文献   

6.
    
In biology, noise implies error and disorder and is therefore something which organisms may seek to minimize and mitigate against. We argue that such noise can be adaptive. Recent studies have shown that gene expression can be noisy, noise can be genetically controlled, genes and gene networks vary in how noisy they are and noise generates phenotypic differences among genetically identical cells. Such phenotypic differences can have fitness benefits, suggesting that evolution can shape noise and that noise may be adaptive. For example, gene networks can generate bistable states resulting in phenotypic diversity and switching among individual cells of a genotype, which may be a bet hedging strategy. Here, we review the sources of noise in gene expression, the extent to which noise in biological systems may be adaptive and suggest that applying evolutionary rigour to the study of noise is necessary to fully understand organismal phenotypes.  相似文献   

7.
    
Riparian forest restoration generally involves introduction of later‐successional tree species, but poor species suitability to severely altered or degraded site conditions results in high mortality and poor community development. Additionally, while microtopographic heterogeneity plays a crucial role in the development of natural riparian forests, little is known regarding effects of restored or created microtopography on the development of introduced plant communities. The objective of this study was to determine the influence of created microtopography and soil treatments on early development of introduced pioneer and later‐successional plant communities in riparian forest restoration. Ridges, flats, and a mound‐and‐pool complex were created, and pioneer and later‐successional tree assemblages were planted within plots in each of these three microtopographic positions. Straw‐based erosion control mats were placed on half the plots as a source of mulch. After two growing seasons, growth and survival of the pioneer assemblage were equal among microtopographic positions, but survival of the later‐successional assemblage was significantly higher on ridges (59%) than on mounds and pools (22%) and flats (26%). A suitability index indicated that performance of the later‐successional assemblage on ridges was higher than that of the pioneer assemblage for all microtopographic positions. Flood duration explained much of the variation in plant assemblage survival, and erosion control mats had little influence on seedling survival. Restoring microtopographic features has the potential to enhance species survival and promote community development. Microtopographic restoration may be as important in riparian forest restoration as proper species selection and hydrologic reestablishment, especially at severely disturbed sites.  相似文献   

8.
    
Epigenetic processes manage gene expression and products in a real‐time manner, allowing a single genome to display different phenotypes. In this paper, we discussed the relevance of assessing the different sources of epigenetic variation in natural populations. For a given genotype, the epigenetic variation could be environmentally induced or occur randomly. Strategies developed by organisms to face environmental fluctuations such as phenotypic plasticity and diversified bet‐hedging rely, respectively, on these different sources. Random variation can also represent a proxy of developmental stability and can be used to assess how organisms deal with stressful environmental conditions. We then proposed the microbiome as an extension of the epigenotype of the host to assess the factors determining the establishment of the community of microorganisms. Finally, we discussed these perspectives in the applied context of conservation.  相似文献   

9.
    
Studies on the effectiveness of in‐stream restoration have generally reported increased habitat heterogeneity, but biological responses have been more variable. One hypothesis states that the restored habitat structure does not persist through time, resulting in fading biological responses. We studied the durability of in‐stream restoration in northern and central Finland by assessing short‐term (0–1 years) and long‐term (≥10 years) changes in habitat structure after restoration. In 2010, we repeated the field surveys first conducted in the 1990s in 27 stream reaches. We also made similar habitat measurements in ten near‐pristine sites. Restoration caused significant changes in the stream habitat that either remained unaltered or were reinforced through time, with several of the restored sites resembling closely the near‐pristine reference sites 10–20 years post‐restoration. Cover of aquatic mosses initially decreased sharply but recovered close to near‐pristine level within about 15 years. However, substrate variability still remained somewhat lower in the restored than in near‐pristine streams. Individual restoration structures had changed little over time. The most evident failures were the disappearance and entrenchment of gravel beds. Restoration of our study sites had shifted the sites to a trajectory towards more natural habitat conditions, and our results do not support the hypothesis that gradual destruction of the restored habitat might partly explain weak biological responses. From the perspective of channel evolution, the restorations were still fairly recent, and only long‐term monitoring will tell if the sites will continue on the trajectory to hydromorphological and ecological recovery. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
刘旭  张文慧  李咏红  高鹏杰  李黎  王彤 《生态学报》2018,38(12):4404-4411
北京地区处于全球候鸟东亚-澳大利西亚的迁徙路线上,是候鸟重要的迁徙路线,近些年,随着人为活动的影响,该区生境破碎化问题愈发突出,直接威胁着本地鸟种和过境迁徙鸟类的生存。为达到保护鸟类多样性的目的,需开展相应的栖息地恢复工作。不同生态类群的鸟类对栖息地有着不同的要求,相同鸟种在不同空间、季节和生活期对栖息地的选择也有着不同的特点。因而,鸟类栖息地恢复应针对目标鸟种根据其繁殖特点、巢位空间分布、食性特点、活动空间特点等进行规划营造。以北京房山琉璃河湿地公园为例,针对项目所在区域的鸟类分布特征,确定目标恢复鸟种,结合项目区现场条件,围绕目标鸟种对于栖息地水系、植被等方面的需求,从岸线重塑、水深设计、植物配置、生态鸟岛等方面规划设计鸟类栖息地修复措施。  相似文献   

11.
Mate choice by females may be influenced by both advertizing traits of males, and behaviour of other females. Here, a simple genetic and behavioural model studies the advantages of mate‐choice copying. From a genetic point of view, a female preferring to copy others’ mate choice adopts a prudent strategy, because her offspring will inherit the same alleles from their father as the other young in the population. The model predicts that a female should copy others’ mate‐choice, unless she encounters a relatively more attractive male than the one she has observed mating, and the attractiveness of the male reflects his genotype. For low or moderate reliability of male signalling, mate‐copying is always predicted, even if the newcoming male is more attractive than the first male. This effect is attenuated, however, when the number of females that have already chosen the first male increases.  相似文献   

12.
13.
    
Extreme weather events are becoming more frequent, severe, and/or widespread as a consequence of anthropogenic climate change. While the economic and ecological implications of these changes have received considerable attention, the role of evolutionary processes in determining organismal responses to these critical challenges is currently unknown. Here we develop a novel theoretical framework that explores how alternative pathways for adaptation to rare selection events can influence population‐level vulnerabilities to future changes in the frequency, scope, and intensity of environmental extremes. We begin by showing that different life histories and trait expression profiles can shift the balance between additive and multiplicative properties of fitness accumulation, favoring different evolutionary responses to identical environmental phenomena. We then demonstrate that these different adaptive outcomes lead to predictable differences in population‐level vulnerabilities to rapid increases in the frequency, intensity, or scope of extreme weather events. Specifically, we show that when the primary mode of fitness accumulation is additive, evolution favors ignoring environmental extremes and lineages become highly vulnerable to extinction if the frequency or scope of extreme weather events suddenly increases. Conversely, when fitness accumulates primarily multiplicatively, evolution favors bet‐hedging phenotypes that cope well with historical extremes and are instead vulnerable to sudden increases in extreme event intensity. Our findings address a critical gap in our understanding of the potential consequences of rare selection events and provide a relatively simple rubric for assessing the vulnerabilities of any population of interest to changes in a wide variety of extreme environmental phenomena.  相似文献   

14.
    
《Plant Ecology & Diversity》2013,6(5-6):443-451
Background: Variable habitat conditions contribute to morphological variability that plays a substantial part in evolution of plants. Understanding the extent of phenotypic plasticity has important implication for assigning individuals to taxa.

Aims: I analysed morphological variability among populations within species of the Carex flava group and tested to what extent morphological variability was associated with habitat conditions.

Methods: A total of 571 specimens from 20 populations of four species from the C. flava complex were sampled in Poland and tested by Discriminant Function Analysis (DFA). The relationship between morphological characters and habitat factors was explored by means of the redundancy analysis (RDA).

Results: Variability of the generative and vegetative traits was fairly similar in Carex lepidocarpa, C. flava and Carex demissa, while it was somewhat higher in Carex viridula. The morphological traits were mostly related to soil organic matter content, calcium and carbonate, as well as to habitat fertility (C:N ratio), elevation and habitat disturbance. The results obtained do not support the separation of C. viridula var. pulchella from C. viridula var. viridula.

Conclusions: Phenotypic variability in the species of the C. flava complex is related to habitat conditions and this can lead to the differentiation of morphotypes within species.  相似文献   

15.
    
There are many inputs during development that influence an organism's fit to current or upcoming environments. These include genetic effects, transgenerational epigenetic influences, environmental cues and developmental noise, which are rarely investigated in the same formal framework. We study an analytically tractable evolutionary model, in which cues are integrated to determine mature phenotypes in fluctuating environments. Environmental cues received during development and by the mother as an adult act as detection‐based (individually observed) cues. The mother's phenotype and a quantitative genetic effect act as selection‐based cues (they correlate with environmental states after selection). We specify when such cues are complementary and tend to be used together, and when using the most informative cue will predominate. Thus, we extend recent analyses of the evolutionary implications of subsets of these effects by providing a general diagnosis of the conditions under which detection and selection‐based influences on development are likely to evolve and coexist.  相似文献   

16.
To better understand the effects of local topography and climate on soil respiration, we conducted field measurements and soil incubation experiments to investigate various factors influencing spatial and temporal variations in soil respiration for six mixed‐hardwood forest slopes in the midst of the Korean Peninsula. Soil respiration and soil water content (SWC) were significantly greater (P=0.09 and 0.003, respectively) on north‐facing slopes compared to south‐facing slopes, while soil temperature was not significantly different between slopes (P>0.5). At all sites, soil temperature was the primary factor driving temporal variations in soil respiration (r2=0.84–0.96) followed by SWC, which accounted for 30% of soil respiration spatial and temporal variability. Results from both field measurements and incubation experiments indicate that variations in soil respiration due to aspect can be explained by a convex‐shaped function relating SWC to normalized soil respiration rates. Annual soil respiration estimates (1070–1246 g C m?2 yr?1) were not closely related to mean annual air temperatures among sites from different climate regimes. When soils from each site were incubated at similar temperatures in a laboratory, respiration rates for mineral soils from wetter and cooler sites were significantly higher than those for the drier and warmer sites (n=4, P<0.01). Our results indicate that the application of standard temperature‐based Q10 models to estimate soil respiration rates for larger geographic areas covering different aspects or climatic regimes are not adequate unless other factors, such as SWC and total soil nitrogen, are considered in addition to soil temperature.  相似文献   

17.
    
Restoration has the potential to increase habitat heterogeneity through the creation of unique habitat patches that, in turn, increase regional species richness or gamma diversity. While biological diversity and habitat heterogeneity are important factors to consider under a shifting climate, restoration actions and outcomes rarely examine these components. In this study, we examined the effects of riparian beaver dam analog (BDA) restoration on aquatic invertebrate diversity and habitat heterogeneity. Although the effects of BDAs on hydrology, geomorphology, and salmonid habitat have been explored, we are unaware of any studies assessing their effects on aquatic invertebrate diversity and the food web that supports them. We sampled aquatic invertebrates, basal carbon resources, dissolved nutrients, turbidity, and water temperature in pre- and post-BDA pond, side channel, and mainstem habitat over a three-year period. The BDAs functioned similarly to natural beaver dams and created slow-water environments that accumulated fine particulate organic material and increased pelagic phytoplankton production. Nonmetric multidimensional scaling, permutation multivariate analysis of variance, and Mantel's tests demonstrated that these changes led to the formation of a unique invertebrate community populated by lentic macroinvertebrates and zooplankton, which increased beta-diversity and gamma diversity. Further, BDAs in our study maintained high densities of invertebrates and buffered water temperatures in comparison to adjacent lotic habitats. These results support our hypothesis that BDAs can enhance invertebrate beta and gamma diversity through the creation and colonization of unique pond habitat and improve habitat and resource heterogeneity for native fishes under variable climate conditions.  相似文献   

18.
    
Hatching plasticity has been documented in diverse terrestrial and freshwater taxa, but in few marine invertebrates. Anecdotal observations over the last 80 years have suggested that intertidal neritid snails may produce encapsulated embryos able to significantly delay hatching. The cause for delays and the cues that trigger hatching are unknown, but temperature, salinity, and wave action have been suggested to play a role. We followed individual egg capsules of Nerita scabricosta in 16 tide pools to document the variation in natural time to hatching and to determine if large delays in hatching occur in the field. Hatching occurred after about 30 d and varied significantly among tide pools in the field. Average time to hatching in each pool was not correlated with presence of potential predators, temperature, salinity, or pool size. We also compared hatching time between egg capsules in the field to those kept in the laboratory at a constant temperature in motionless water, and to those kept in the laboratory with sudden daily water motion and temperature changes. There was no significant difference in the hatching rate between the two laboratory treatments, but capsules took, on average, twice as long to hatch in the laboratory as in the field. Observations of developing embryos showed that embryos in the field develop slowly and continuously until hatching, but embryos in the laboratory reach the hatching stage during the first month of development and remain in stasis after that. Instances of hatching plasticity in benthic marine invertebrates, like the one in N. scabricosta, could greatly enhance our ability to investigate the costs and benefits of benthic versus planktonic development, a long‐standing area of interest for invertebrate larval biologists.  相似文献   

19.
目录     
《生态学杂志》1982,39(9):0
  相似文献   

20.
    
Adaptive studies of avian clutch size variation across environmental gradients have resulted in what has become known as the fecundity gradient paradox, the observation that clutch size typically decreases with increasing breeding season length along latitudinal gradients, but increases with increasing breeding season length along elevational gradients. These puzzling findings challenge the common belief that organisms should reduce their clutch size in favor of additional nesting attempts as the length of the breeding season increases, an approach typically described as a bet‐hedging strategy. Here, we propose an alternative hypothesis—the multitasking hypothesis—and show that laying smaller clutches represents a multitasking strategy of switching between breeding and recovery from breeding. Both our individual‐based and analytical models demonstrate that a small clutch size strategy is favored during shorter breeding seasons because less time and energy are wasted under the severe time constraints associated with breeding multiply within a season. Our model also shows that a within‐generation bet‐hedging strategy is not favored by natural selection, even under a high risk of predation and in long breeding seasons. Thus, saving time—wasting less time as a result of an inability to complete a breeding cycle at the end of breeding season—is likely to be the primary benefit favoring the evolution of small avian clutch sizes during short breeding seasons. We also synthesize the seasonality hypothesis (pronounced seasonality leads to larger clutch size) and clutch size‐dependent predation hypothesis (larger clutch size causes higher predation risks) within our multitasking hypothesis to develop an integrative model to help resolve the paradox of contrasting patterns of clutch size along elevational and latitudinal gradients. Ultimately, our models provide a new perspective for understanding life‐history evolution under fluctuating environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号