首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
  • Abiotic stress is one of the key parameters affecting plant productivity. Drought and soil salinity, in particular, challenge plants to activate various response mechanisms to withstand these adverse growth conditions. While the molecular events that take place are complex and to a large extent unclear, the plant hormone abscisic acid (ABA) is considered a major player in mediating the adaptation of plants to stress.
  • Here we report the identification of an ABA‐insensitive mutant from Arabidopsis thaliana. A combination of molecular, genetic and physiology approaches were implemented, to characterise the AtRASD1 locus (A BA D ROUGHT 相似文献   

3.
The changes in external K+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K+ signal to modulate root growth remains unknown. It is hypothesized that the K+ channel AKT1 is involved in low K+ sensing in the Arabidopsis root and subsequent regulation of root growth. Along with the decline of external K+ concentration, the primary root growth of wild‐type plants was gradually inhibited. However, the primary root of the akt1 mutant could still grow under low K+ (LK) conditions. Application of NAA inhibited akt1 root growth, but promoted wild‐type root growth under LK conditions. By using the ProDR5:GFP and ProPIN1:PIN1‐GFP lines, we found that LK treatment reduced auxin accumulation in wild‐type root tips by degrading PIN1 proteins, which did not occur in the akt1 mutant. The LK‐induced PIN1 degradation may be due to the inhibition of vesicle trafficking of PIN1 proteins. In conclusion, our findings indicate that AKT1 is required for an Arabidopsis response to changes in external K+, and subsequent regulation of K+‐dependent root growth by modulating PIN1 degradation and auxin redistribution in the root.  相似文献   

4.
5.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

6.
7.
8.
The involvement of Rho of Plants (ROP) GTPases in abscisic acid (ABA) signalling in Arabidopsis has been demonstrated in many studies. However, the roles of RopGEFs (Rop guanine nucleotide exchange factors), which modulate ROP activities in ABA signalling, are poorly understood. Here, we demonstrate that RopGEF2 may play a negative role in ABA‐suppressed seed germination and post‐germination growth. We show that disruption of RopGEF2 enhances sensitivity to exogenous ABA in seed germination assays and that RopGEF2pro‐GUS is mainly expressed in developing embryos and germinating seeds. Interestingly, YFP‐RopGEF2 is located in both the cytoplasmic region and in mitochondria. Notably, the PRONE2 (plant‐specific ROP nucleotide exchanger 2) domain of RopGEF2 is detected in mitochondria, whereas the N‐terminus of RopGEF2 is shown to be in the cytosol. After ABA treatment, degradation of RopGEF2 is triggered in the cytosol through the ubiquitin‐26S proteasome system. The binding of RopGEF2 to ROP2, ROP6 or ROP10, which has been demonstrated to be involved in ABA signalling, not only alters the localization of RopGEF2 but also enables RopGEF2 to escape degradation in the cell. Thus, in this study, we deduce a sophisticated mechanism of ABA‐mediated RopGEF2‐ROP signalling, which potentially implicates the inactivation of ROPs in responsiveness to ABA.  相似文献   

9.
10.
Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root‐bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6‐1, which defines a locus essential for osmotic stress tolerance. sos6‐1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase‐like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6‐1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress.  相似文献   

11.
Arabidopsis mutants with reduced response to NaCl and osmotic stress   总被引:11,自引:0,他引:11  
We isolated 6 mutant lines of Arabidopsis thaliana that expressed reduced sensitivity to salt and osmotic stress during germination. All 6 lines cum recessive mutations in a single gene, designated reduced salt sensitivity (rss), linked to the ADH marker on chromosome 1. The rss mutants are less sensitive than wild type for NaCl and osmotic stress inhibition of germination, tolerating approximately 150 mM higher concentrations of NaCl and about 250 mM higher concentrations of sorbitol in the media. Germination assays on media containing various salts indicate that the rss mutations reduce sensitivity lo Na+ and Rh+ but also, to a much lesser degree, to K+ and Css+. However, the rss mutation does not improve plant growth when plantlets are transferred to high salt or high osmotic pressure media after germination. The rss plantlets accumulate praline to a significantly lesser degree than wild type when they are exposed to either salt or osmotic stress. Thus, the rss mutants differ from wild type both at germination and during vegetative growth indicating that the rss mutations are pleiotropic and might affect perception of solutes or some aspect of stress-induced signaling. The rss mutations do not alter ABA sensitivity and therefore probably do not affect ABA-mediated signaling.  相似文献   

12.
13.
14.
15.
16.
Salt stress leads to a stress response, called the unfolded protein response (UPR), in the endoplasmic reticulum (ER). UPR is also induced in a wide range of organisms by zinc deficiency. However, it is not clear whether regulation of zinc levels is involved in the initiation of the UPR in plant response to salt stress. In this study, a putative zinc transporter, ZTP29, was identified in Arabidopsis thaliana. ZTP29 localizes to the ER membrane and is expressed primarily in hypocotyl and cotyledon tissues, but its expression can be induced in root tissue by salt stress. T-DNA insertion into the ZTP29 gene led to NaCl hypersensitivity in seed germination and seedling growth, leaf etiolation, and widening of cells in the root elongation zone. In addition, in ztp29 mutant plants, salt stress-induced upregulation of the UPR pathway genes BiP2 and bZIP60 was inhibited. Furthermore, under conditions of salt stress, upregulation of BiP2 and bZIP60 was inhibited by treatment with high concentrations of zinc in both control and ztp29 plants. However, zinc chelation restored salt stress-induced BiP2 and bZIP60 upregulation in ztp29 mutant plants. These experimental results suggest that ZTP29 is involved in the response to salt stress, perhaps through regulation of zinc levels required to induce the UPR pathway.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号