首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Wnt/β‐catenin signaling pathway has been increasingly implicated in liver development and physiology. Aberrant activation of this pathway is one of the major genetic events observed during the process of human HCC development. To gain insight into the mechanism underlying β‐catenin action in the liver, we conducted a quantitative differential proteomic analysis using 2‐D DIGE combined with MS, in mice with liver‐specific deletion of Apc resulting in acute activation of β‐catenin signaling (ApcKOliv mice). We identified 94 protein spots showing differential expression between mutant ApcKOliv and control mice, corresponding to 56 individual proteins. Most of the proteins identified were associated with metabolic pathways, such as ammonia and glucose metabolism. Our analysis showed an increase in lactate dehydrogenase activity together with a downregulation of two mitochondrial ATPase subunits (ATP5a1 and ATP5b). These observations indicate that β‐catenin signaling may induce a shift in the glucose metabolism from oxidative phosphorylation to glycolysis, known as the “Warburg effect”. Imaging with 18F‐fluoro‐2‐deoxy‐D ‐glucose‐positron emission tomography suggests that the specific metabolic reprogramming induced by β‐catenin in the liver does not imply the first step of glycolysis. This observation may explain why some HCCs are difficult to assess by fluoro‐2‐deoxy‐D ‐glucose‐positron emission tomography imaging.  相似文献   

3.
Traditional methods to localize β‐glycosidase activity in tissue sections have been based on incubation with the general substrate 6‐bromo‐2‐naphthyl‐β‐d ‐glucopyranoside. When hydrolysed in the presence of salt zinc compounds, 6‐bromo‐2‐naphthyl‐β‐d ‐glucopyranoside affords the formation of an insoluble coloured product. This technique does not distinguish between different β‐glycosidases present in the tissue. To be able to monitor the occurrence of individual β‐glycosidases in different tissues and cell types, we have developed a versatile histochemical method that can be used for localization of any β‐glycosidase that upon incubation with its specific substrate releases a reducing sugar. Experimentally, the method is based on hydrolysis of the specific substrate followed by oxidation of the sugar released by a tetrazolium salt (2,3,5‐triphenyltetrazolium chloride) that forms a red insoluble product when reduced. The applicability of the method was demonstrated by tissue and cellular localization of two β‐glucosidases, amygdalin hydrolase and prunasin hydrolase, in different tissues and cell types of almond. In those cases where the analysed tissue had a high content of reducing sugars, this resulted in strong staining of the background. This interfering staining of the background was avoided by prior incubation with sodium borohydride. The specificity of the devised method was demonstrated in a parallel localization study using a specific antibody towards prunasin hydrolase.  相似文献   

4.
5.
Association between verrucous carcinoma (VC) of the head and neck and human papillomaviruses (HPV) is highly controversial. Previous prevalence studies focused mostly on α‐PV, while little is known about other PV genera. Our aim was to investigate the prevalence of a broad spectrum of HPV in VC of the head and neck using sensitive and specific molecular assays. Formalin‐fixed, paraffin‐embedded samples of 30 VC and 30 location‐matched normal tissue samples were analysed, by using six different polymerase chain reaction‐based methods targeting DNA of at least 87 HPV types from α‐PV, β‐PV, γ‐PV and μ‐PV genera, and immunohistochemistry against p16 protein. α‐PV, γ‐PV and μ‐PV were not detected. β‐PV DNA was detected in 5/30 VC (16.7%) and in 18/30 normal tissue samples (60.0%): HPV‐19, ‐24 and ‐36 were identified in VC, and HPV‐5, ‐9, ‐12, ‐23, ‐24, ‐38, ‐47, ‐49 and ‐96 in normal tissue, whereas HPV type was not determined in 2/5 cases of VC and in 6/18 normal tissue samples. p16 expression was detected in a subset of samples and was higher in VC than in normal tissue. However, the reaction was predominantly cytoplasmic and only occasionally nuclear, and the extent of staining did not exceed 75%. Our results indicate that α‐PV, γ‐PV and μ‐PV are not associated with aetiopathogenesis of VC of the head and neck. β‐PV DNA in a subset of VC and normal tissue might reflect incidental colonization, but its potential biological significance needs further investigation.  相似文献   

6.
? Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. ? The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. ? This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. ? The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.  相似文献   

7.
Metabolic syndrome is marked by perturbed glucocorticoid (GC) signaling, systemic inflammation, and altered immune status. Dehydroepiandrosterone (DHEA), a major circulating adrenal steroid and dietary supplement, demonstrates antiobesity, anti‐inflammatory, GC‐opposing and immune‐modulating activity when administered to rodents. However, plasma DHEA levels failed to correlate with metabolic syndrome and oral replacement therapy provided only mild benefits to patients. Androstene‐3β,7β,17β‐triol (β‐AET) an anti‐inflammatory metabolite of DHEA, also exhibits GC‐opposing and immune‐modulating activity when administered to rodents. We hypothesized a role for β‐AET in obesity. We now report that plasma levels of β‐AET positively correlate with BMI in healthy men and women. Together with previous studies, the observations reported here may suggest a compensatory role for β‐AET in preventing the development of metabolic syndrome. The β‐AET structural core may provide the basis for novel pharmaceuticals to treat this disease.  相似文献   

8.
The l ‐ascorbate (AsA) content and the expression of six l ‐galactose pathway‐related genes were analyzed in peach flesh during fruit development. Fluctuation of AsA during peach fruit development was divided into four phases based on the overall total AsA (T‐AsA) content per fruit: AsA I, 0–36 days after full bloom (DAFB); AsA II, 37–65 DAFB; AsA III, 66–92 DAFB and AsA IV, 93–112 DAFB. Phase AsA III was a lag phase for AsA accumulation, but did not coincide with the lag phase for fruit development. The T‐AsA concentration was highest at the early stage until 21 DAFB [2–3μmol per gram of fresh weight (g?1 FW)], and decreased to 1/4 and 1/15 of this value at 50 and 92 DAFB, respectively. T‐AsA then remained at 0.15–0.20μmol g?1 FW until harvest at 112 DAFB. More than 90% of the T‐AsA was in the reduced form until 21 DAFB. The proportion of reduced form of AsA then decreased concomitantly with the decrease in AsA concentration. To determine the main pathway of AsA biosynthesis and the AsA biosynthetic capacity of peach flesh, several precursors were incubated with immature whole fruit (59 DAFB). The AsA concentration increased markedly with l ‐galactono‐1,4‐lactone or l ‐galactose (Gal), but d ‐galacturonate and l ‐gulono‐1,4‐lactone failed to increase AsA, indicating dominance of the Gal pathway and potent AsA biosynthetic capabilities in immature peach flesh. The expression of genes involved in the last six steps of the Gal pathway was measured during fruit development. The genes studied included GDP‐d ‐mannose pyrophosphorylase (GMPH), GDP‐ d ‐mannose‐3′,5′‐epimerase (GME), GDP‐ l ‐galactose guanylyltransferase (GGGT), l ‐galactose‐1‐phosphate phosphatase (GPP), l ‐galactose‐1‐dehydrogenase (GDH) and l ‐galactono‐1,4‐lactone dehydrogenase (GLDH). GMPH, GME and GGGT had similar expression patterns that peaked at 43 DAFB. GPP, GDH and GLDH also had similar expression patterns that peaked twice at 21 and 91 DAFB, although the expression of GDH was quite low. High level of T‐AsA concentration was roughly correlated with the level of gene expression in the early period of fruit development (AsA I), whereas no such relationships were apparent in the other periods (e.g. AsA III and IV). On the basis of these findings, we discuss the regulation of AsA biosynthesis in peach fruit.  相似文献   

9.
10.
Fruit maturation and tissue differentiation are important topics in plant physiology. These biological phenomena are accompanied by specific alterations in the biological system, such as differences in the type and concentration of metabolites. The secondary metabolism of tomato (Solanum lycopersicum) fruit was monitored by using liquid chromatography (LC) coupled to photo-diode array (PDA) detection, fluorescence detection (FD), and mass spectrometry (MS). Through this integrated approach different classes of compounds were analysed: carotenoids, xanthophylls, chlorophylls, tocopherols, ascorbic acid, flavonoids, phenolic acids, glycoalkaloids, saponins, and other glycosylated derivatives. Related metabolite profiles of peel and flesh were found between several commercial tomato cultivars indicating similar metabolite trends despite the genetic background. For a single tomato cultivar, metabolite profiles of different fruit tissues (vascular attachment region, columella and placenta, epidermis, pericarp, and jelly parenchyma) were examined at the green, breaker, turning, pink, and red stages of fruit development. Unrelated to the chemical nature of the metabolites, behavioural patterns could be assigned to specific ripening stages or tissues. These findings suggest spatio-temporal specificity in the accumulation of endogenous metabolites from tomato fruit.  相似文献   

11.
A comprehensive study was carried out to examine the interactions between the two major hydrophilic antioxidants l ‐ascorbate (vitamin C, l ‐AA), and glutathione (γ‐glutamyl cysteinylglycine, GSH), and other antioxidant pools in tissues of Malus, to identify factors affecting steady‐state cellular concentrations. We show that in Malus, each tissue type has a characteristic and different l ‐AA/GSH ratio and that in fruit, exocarp (epidermal) tissue acclimated to high light has higher l ‐AA levels but lower GSH levels than shaded (green) areas. Maturing seeds were characterized by the highest concentrations of GSH and a highly oxidized l ‐AA pool. It is demonstrated that fruit seeds are capable of l ‐AA biosynthesis, but that this occurs exclusively by means of the Smirnoff–Wheeler pathway. By contrast, foliar tissue was also able to synthesize l ‐AA using uronic acid substrates. Unlike the fruit of some other plant species however, the remaining fruit tissues are incapable of de novol ‐AA biosynthesis. The observed differences in the steady‐state concentrations of l ‐AA and GSH and the capacity to withstand stress in fruit, were also independent of the rates of uptake of photosynthate or of l ‐AA, but were correlated with the protective effect provided by phenolic compounds in these tissues. During development and maturation, l ‐AA and GSH levels in apple fruit declined steadily while foliar levels remained essentially constant throughout. However there was no apparent relationship between the free sugar contents of the fruit and antioxidant concentrations.  相似文献   

12.
Treatments to control purple spot of loquat fruit (Eriobotrya japonica) were tested based on the hypothesis that the disorder appears as a consequence of water unbalance between flesh and epidermal tissues caused by their different ability for sugar accumulation. Calcium nitrate, calcium chloride, Ca‐EDTA, ammonium nitrate and potassium nitrate at a concentration of 150 mm applied 2 weeks before fruit colour break reduced significantly the proportion of purple‐spotted fruit, giving rise to a reduction of water potential of the epidermal tissue that allows it to retain water. The most favourable date of treatment was during the 2 weeks prior to fruit colour break.  相似文献   

13.
The relationships between eosinophils and adipose tissues are involved in metabolic homeostasis. Eotaxin is a chemokine with potent effects on eosinophil migration. To clarify the mechanisms of eotaxin expression in adipose tissues, we examined the effects of fibroblast growth factor‐2 (FGF‐2) and interleukin‐4 (IL‐4) stimulation on eotaxin expression in adipose tissue‐derived stromal cells (ASCs), a type of adipocyte progenitor, in vitro. ASCs expressed eotaxin‐1 and did not express eotaxin‐2 or ‐3. Eotaxin‐1 expression was increased in a concentration‐dependent manner following FGF‐2 treatment. Additionally, ASCs expressed FGF receptor‐1 (FGFR‐1) and did not express FGFR‐2, ‐3, or ‐4. Eotaxin‐1 expression was inhibited in cells treated with the FGFR tyrosine kinase inhibitor and extracellular signal‐regulated kinase (ERK) inhibitor U0126, even in the presence of FGF‐2. Moreover, eotaxin‐1 expression was synergistically enhanced by combined treatment with FGF‐2 and IL‐4 and inhibited in the presence of U0126. Eotaxin‐1 expression induced by FGF‐2 and IL‐4 was involved in ERK activation via FGFR‐1 in ASCs. Upregulation of eotaxin expression in adipose tissues could increase eosinophil migration, thereby inducing IL‐4 secretion and activation of alternative macrophages and improving glucose homeostasis. These findings provide insights into the mechanisms through which eotaxin mediates metabolic homeostasis in adipose tissues and eosinophils.  相似文献   

14.
β‐d ‐glucans from mushroom strains play a major role as biological response modifiers in several clinical disorders. Therefore, a specific assay method is of critical importance to find useful and novel sources of β‐d ‐glucans with anti‐tumor activity. Hybridoma technology was used to raise monoclonal antibodies (Mabs) against extracellular β‐d ‐glucans (EBG) from Pleurotus ostreatus. Two of these hybridoma clones (3F8_3H7 and 1E6_1E8_B3) secreting Mabs against EBG from P. ostreatus were selected and 3F8_3H7 was used to investigate if they are polyol‐responsive Mabs (PR‐Mabs) by using ELlSA‐elution assay. This hybridoma cell line secreted Mab of IgM class, which was purified in a single step by gel filtration chromatography on Sephacryl S‐300HR, which revealed a protein band on native PAGE with Mr of 917 kDa. Specificity studies of Mab 3F8_3H7 revealed that it recognized a common epitope on several β‐d ‐glucans from different basidiomycete strains as determined by indirect ELlSA and Western blotting under native conditions. This Mab exhibited high apparent affinity constant (KApp) for β‐d ‐glucans from several mushroom strains. However, it revealed differential reactivity to some heat‐treated β‐d ‐glucans compared with the native forms suggesting that it binds to a conformation‐sensitive epitope on β‐d ‐glucan molecule. Epitope analysis of Mab 3F8_3H7 and 1E6_1E8_B3 was investigated by additivity index parameter, which revealed that they bound to the same epitope on some β‐d ‐glucans and to different epitopes in other antigens. Therefore, these Mab can be used to assay for β‐d ‐glucans as well as to act as powerful probes to detect conformational changes in these biopolymers. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:116–125, 2016  相似文献   

15.
Plant β‐galactosidases hydrolyze cell wall β‐(1,4)‐galactans to play important roles in cell wall expansion and degradation, and turnover of signaling molecules, during ripening. Tomato β‐galactosidase 4 (TBG4) is an enzyme responsible for fruit softening through the degradation of β‐(1,4)‐galactan in the pericarp cell wall. TBG4 is the only enzyme among TBGs 1–7 that belongs to the β‐galactosidase/exo‐β‐(1,4)‐galactanase subfamily. The enzyme can hydrolyze a wide range of plant‐derived (1,4)‐ or 4‐linked polysaccharides, and shows a strong ability to attack β‐(1,4)‐galactan. To gain structural insight into its substrate specificity, we determined crystal structures of TBG4 and its complex with β‐d ‐galactose. TBG4 comprises a catalytic TIM barrel domain followed by three β‐sandwich domains. Three aromatic residues in the catalytic site that are thought to be important for substrate specificity are conserved in GH35 β‐galactosidases derived from bacteria, fungi and animals; however, the crystal structures of TBG4 revealed that the enzyme has a valine residue (V548) replacing one of the conserved aromatic residues. The V548W mutant of TBG4 showed a roughly sixfold increase in activity towards β‐(1,6)‐galactobiose, and ~0.6‐fold activity towards β‐(1,4)‐galactobiose, compared with wild‐type TBG4. Amino acid residues corresponding to V548 of TBG4 thus appear to determine the substrate specificities of plant β‐galactosidases towards β‐1,4 and β‐1,6 linkages.  相似文献   

16.
Sulfur‐containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur‐containing and other volatiles. l –methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with 13C‐ and 2H‐labeled l –methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an l ‐methionine aminotransferase and preserves the main carbon skeleton of l ‐methionine. The second route apparently involves the action of an l ‐methionine‐γ–lyase activity, releasing methanethiol, a backbone for formation of thiol‐derived aroma volatiles. Exogenous l ‐methionine also generated non‐sulfur volatiles by further metabolism of α–ketobutyrate, a product of l ‐methionine‐γ–lyase activity. α–Ketobutyrate was further metabolized into l –isoleucine and other important melon volatiles, including non‐sulfur branched and straight‐chain esters. Cell‐free extracts derived from ripe melon fruit exhibited l ‐methionine‐γ–lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing l ‐methionine‐γ–lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co‐segregated with the levels of sulfur‐containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that l ‐methionine is a precursor of both sulfur and non‐sulfur aroma volatiles in melon fruit.  相似文献   

17.
β‐Arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that β‐arrestin‐1 (β‐arr‐1) and ‐2 knockout (KO) mice are protected from TLR4‐mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild‐type (WT) and β‐arr‐1 and ‐2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS‐induced inflammatory cytokine levels in the plasma were markedly decreased in both β‐arr‐1 and ‐2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11b+ and CD11b? populations) from WT, β‐arr‐1, and ‐2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS‐induced inflammatory cytokines were significantly blocked in both splenocyte populations from the β‐arr‐2 KO compared to the WT mice. This effect in the β‐arr‐1 KO mice, however, was restricted to the CD11b? splenocytes. Our studies further indicate that regulation of cytokine production by β‐arrestins is likely independent of MAPK and IκBα‐NFκB pathways. Our results, however, suggest that LPS‐induced chromatin modification is dependent on β‐arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by β‐arrestins in vivo. Taken together, these results indicate that β‐arr‐1 and ‐2 mediate LPS‐induced cytokine secretion in a cell‐type specific manner and that both β‐arrestins have overlapping but non‐redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice. J. Cell. Physiol. 225: 406–416, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We have conducted a comprehensive metabolic profiling on tomato (Lycopersicon esculentum) leaf and developing fruit tissue using a recently established gas chromatography-mass spectrometry profiling protocol alongside conventional spectrophotometric and liquid chromatographic methodologies. Applying a combination of these techniques, we were able to identify in excess of 70 small-M(r) metabolites and to catalogue the metabolite composition of developing tomato fruit. In addition to comparing differences in metabolite content between source and sink tissues of the tomato plant and after the change in metabolite pool sizes through fruit development, we have assessed the influence of hexose phosphorylation through fruit development by analyzing transgenic plants constitutively overexpressing Arabidopsis hexokinase AtHXK1. Analysis of the total hexokinase activity in developing fruits revealed that both wild-type and transgenic fruits exhibit decreasing hexokinase activity with development but that the relative activity of the transgenic lines with respect to wild type increases with development. Conversely, both point-by-point and principal component analyses suggest that the metabolic phenotype of these lines becomes less distinct from wild type during development. In summary, the data presented in this paper demonstrate that the influence of hexose phosphorylation diminishes during fruit development and highlights the importance of greater temporal resolution of metabolism.  相似文献   

19.
How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC‐driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl‐tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC‐driven tumors. We find that fewer glutamine‐derived carbons are incorporated into GSH in tumor tissue relative to non‐tumor tissue. Expression of GCLC, the rate‐limiting enzyme of GSH synthesis, is attenuated by the MYC‐induced microRNA miR‐18a. Inhibition of miR‐18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC‐driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC‐dependent attenuation of GCLC by miR‐18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.  相似文献   

20.
Sesame (Sesamum indicum) seeds contain a large number of lignans, phenylpropanoid‐related plant specialized metabolites. (+)‐Sesamin and (+)‐sesamolin are major hydrophobic lignans, whereas (+)‐sesaminol primarily accumulates as a water‐soluble sesaminol triglucoside (STG) with a sugar chain branched via β1→2 and β1→6‐O‐glucosidic linkages [i.e. (+)‐sesaminol 2‐O‐β‐d ‐glucosyl‐(1→2)‐O‐β‐d ‐glucoside‐(1→6)‐O‐β‐d ‐glucoside]. We previously reported that the 2‐O‐glucosylation of (+)‐sesaminol aglycon and β1→6‐O‐glucosylation of (+)‐sesaminol 2‐O‐β‐d ‐glucoside (SMG) are mediated by UDP‐sugar‐dependent glucosyltransferases (UGT), UGT71A9 and UGT94D1, respectively. Here we identified a distinct UGT, UGT94AG1, that specifically catalyzes the β1→2‐O‐glucosylation of SMG and (+)‐sesaminol 2‐O‐β‐d ‐glucosyl‐(1→6)‐O‐β‐d ‐glucoside [termed SDG(β1→6)]. UGT94AG1 was phylogenetically related to glycoside‐specific glycosyltransferases (GGTs) and co‐ordinately expressed with UGT71A9 and UGT94D1 in the seeds. The role of UGT94AG1 in STG biosynthesis was further confirmed by identification of a STG‐deficient sesame mutant that predominantly accumulates SDG(β1→6) due to a destructive insertion in the coding sequence of UGT94AG1. We also identified UGT94AA2 as an alternative UGT potentially involved in sugar–sugar β1→6‐O‐glucosylation, in addition to UGT94D1, during STG biosynthesis. Yeast two‐hybrid assays showed that UGT71A9, UGT94AG1, and UGT94AA2 were found to interact with a membrane‐associated P450 enzyme, CYP81Q1 (piperitol/sesamin synthase), suggesting that these UGTs are components of a membrane‐bound metabolon for STG biosynthesis. A comparison of kinetic parameters of these UGTs further suggested that the main β‐O‐glucosylation sequence of STG biosynthesis is β1→2‐O‐glucosylation of SMG by UGT94AG1 followed by UGT94AA2‐mediated β1→6‐O‐glucosylation. These findings together establish the complete biosynthetic pathway of STG and shed light on the evolvability of regio‐selectivity of sequential glucosylations catalyzed by GGTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号