首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, AtCesA4,7, and 8, are up-regulated for cotton fiber secondary wall deposition. These conclusions arose from: (a) analyzing the expression of CesA genes in arabidopsis shoot trichomes; (b) observing birefringent secondary walls in arabidopsis shoot trichomes with mutations in AtCesA4, 7, or 8; (c) assaying up-regulated genes during different stages of cotton fiber development; and (d) comparing genes that were co-expressed with primary or secondary wall CesAs in arabidopsis with genes up-regulated in arabidopsis trichomes, arabidopsis secondary xylem, or cotton fiber during primary or secondary wall deposition. Cumulatively, the data show that: (a) the xylem of arabidopsis provides the best model for secondary wall cellulose synthesis in cotton fiber; and (b) CesA genes within a "cell wall toolbox" are used in diverse ways for the construction of particular specialized cell walls.  相似文献   

4.
巴西橡胶树HbMYB52基因的克隆及其在拟南芥中的表达   总被引:1,自引:0,他引:1  
为揭示Hb MYB52在巴西橡胶树(Hevea brasiliensis)木材发育过程中的功能,从其转录组中分离克隆到1个MYB转录因子G21亚组成员基因,命名为Hb MYB52,开放阅读框为726 bp,编码242个氨基酸的蛋白,在木质部中高度表达。在拟南芥(Arabidopsis thaliana)中过表达Hb MYB52,虽未改变转基因植株株型,但植株维管束间纤维细胞壁明显增厚,同时抑制了木质纤维、导管次生壁形成。转基因拟南芥株系3和株系6中纤维素和木质素含量减少,相应各组分合成的关键酶基因的表达量也不同程度下降;株系8产生了木质素异位沉积,且木质素合成关键酶基因表达活跃。因此,推测Hb MYB52参与了植物次生壁形成调控,在拟南芥次生壁形成中可能发挥了双重功能:一方面负调控维管束次生壁形成以及各组分的生物合成,另一方面具有促进束间纤维次生壁增厚的作用。  相似文献   

5.
6.
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6‐like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild‐type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6‐like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.  相似文献   

7.
Carbon partitioning to cellulose synthesis   总被引:39,自引:0,他引:39  
This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis. Abbreviations: CesA, cellulose synthase; Csl, cellulose-like synthase (genes); DCB, dichlobenil; DPA, days after anthesis; SPS, sucrose phosphate synthase; SuSy, sucrose synthase; P-SuSy, particulate SuSy; S-SuSy, soluble SuSy  相似文献   

8.
9.
10.
11.
12.
13.
14.
Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.  相似文献   

15.
16.
17.
18.
19.
20.
Polysaccharide analyses of mutants link several of the glycosyltransferases encoded by the 10 CesA genes of Arabidopsis to cellulose synthesis. Features of those mutant phenotypes point to particular genes depositing cellulose predominantly in either primary or secondary walls. We used transformation with antisense constructs to investigate the functions of CesA2 (AthA) and CesA3 (AthB), genes for which reduced synthesis mutants are not yet available. Plants expressing antisense CesA1 (RSW1) provided a comparison with a gene whose mutant phenotype (Rsw1(-)) points mainly to a primary wall role. The antisense phenotypes of CesA1 and CesA3 were closely similar and correlated with reduced expression of the target gene. Reductions in cell length rather than cell number underlay the shorter bolts and stamen filaments. Surprisingly, seedling roots were unaffected in both CesA1 and CesA3 antisense plants. In keeping with the mild phenotype compared with Rsw1(-), reductions in total cellulose levels in antisense CesA1 and CesA3 plants were at the borderline of significance. We conclude that CesA3, like CesA1, is required for deposition of primary wall cellulose. To test whether there were important functional differences between the two, we overexpressed CesA3 in rsw1 but were unable to complement that mutant's defect in CesA1. The function of CesA2 was less obvious, but, consistent with a role in primary wall deposition, the rate of stem elongation was reduced in antisense plants growing rapidly at 31 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号