首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive plants, such as the hybrid cattail Typha × glauca, can reduce biodiversity and alter the ability of wetlands to provide critical ecosystem services, including nutrient cycling and carbon storage. Several approaches have been used to reduce Typha dominance and restore invaded wetlands, but long‐term studies assessing benefits of these restoration efforts are limited. A previous study demonstrated that aboveground harvesting of Typha × glauca stems and litter reduced Typha dominance 2 years post‐treatment in a Great Lakes coastal wetland. In the current study, we extended monitoring of experimental aboveground Typha harvest to 4 years post‐treatment and added assessments of treatment effects on soil nutrients, carbon emissions, and microbial community composition. Aboveground harvest treatment resulted in a dramatic reduction in Typha litter cover that persisted for 4 years, increased soil temperature, and increased abundance of the native plant genus Carex. However, aboveground harvest treatment did not significantly reduce Typha abundance, nor did it have significant effects on soil nutrient concentrations, carbon fluxes, or the taxonomic composition of soil microbial communities. We did observe differences in bacterial community composition between plots based on time since Typha invasion, which may indicate some legacy effects of Typha invasion. At the scale of this experiment (4 × 4 m plots), our results indicate that a single aboveground removal of Typha × glauca is not sufficient to restore a heavily invaded freshwater wetland ecosystem, and that periodic harvesting of Typha stems and litter may be required to maintain native plant abundance.  相似文献   

2.
The influence of local actors and socioeconomic constraints on biological invasions is often ignored. Wetland plant harvesters appeared to intentionally influence cattail (Typha domingensis) invasion around Lake Pátzcuaro, México, by altering their harvesting regimes, according to interviews with 44 expert respondents and botanical surveys. The oldest and most experienced harvesters reported controlling Typha initially, sometimes through organized eradication efforts, in order to protect Schoenoplectus californicus, an economically and culturally valuable wetland plant. Later, outsiders commoditized Typha by introducing new weaving designs popular with tourists, while industrial products and new livelihood activities reduced Schoenoplectus harvest. Harvesters from several communities began to promote Typha re-growth. Some harvesters, however, continued to combat Typha to maintain Schoenoplectus production, especially where supply was limited. Interviews suggested novel ecological cause–effect mechanisms and restoration strategies; some local harvesting regimes could efficiently conserve rare plants. An understanding of local ecological knowledge and incentives can inform invasive species control and conservation policy at a broader scale.  相似文献   

3.
Invasive wetland plants are the primary targets of wetland management to promote native communities and wildlife habitat, but little is known about how commonly implemented restoration techniques influence nutrient cycling. We tested how experimental mowing, herbicide application, and biomass harvest (i.e., removal of aboveground biomass) treatments of Typha-invaded mesocosms altered porewater nutrient (NO3 ?, NH4 +, PO 4 ?3 ) concentration and supply rate, vegetation response, and light penetration to the soil surface. We found that while herbicide application eliminated the target species, it also reduced native plant density and biomass, as well as increased porewater nutrient concentration (PO 4 ?3 , NO3 ?) and supply rates (N, P, K) up to a year after treatments were implemented. Because herbicide application promotes nutrient enrichment, it may increase the likelihood of reinvasion by problematic wetland invaders, as well as cause eutrophication and deleterious algal blooms in adjacent aquatic systems. Our data suggest that biomass harvest should be considered by managers aiming to reduce Typha abundance without eradicating native diversity, avoid nutrient leaching, as well as possibly utilizing biomass for bioenergy.  相似文献   

4.
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter.  相似文献   

5.
Abstract: Common reed (Phragmites australis) forms dense stands with deep layers of residual organic matter that negatively affects plant diversity and possibly habitat use by wetland birds. We sought to determine whether seasonal relative abundance and species richness of birds varied among 3 habitat types in Great Lakes coastal wetland complexes recently invaded by common reed. We used fixed-distance point counts to determine species relative abundances and species richness in edge and interior locales within common reed, cattail (Typha spp.), and meadow marsh habitats of various sizes during 2 summers (2001 and 2002) and 1 autumn (2001) at Long Point, Lake Erie, Ontario, Canada. We found that total relative abundance and species richness of birds were greater in common reed habitat compared to cattail or meadow marsh habitats. However, we also found that relative abundance of marsh-nesting birds was greater in meadow marsh habitat than in cattail and common reed during summer. Lastly, we found that, irrespective of habitat type, habitat edges had higher total relative abundance and species richness of birds than did habitat interiors. Our results show that common reed provides suitable habitat for a diversity of landbirds during summer and autumn but only limited habitat for many marsh-nesting birds during summer. Based on these results, we recommend restoration of meadow marsh habitat through reduction of common reed in Great Lakes wetlands where providing habitat for breeding marsh-nesting birds is an objective. Managers also might consider reducing the size of nonnative common reed stands to increase edge effect and use by birds, possibly including wetland birds.  相似文献   

6.
British Columbia (BC) forests are estimated to have become a net carbon source in recent years due to tree death and decay caused primarily by mountain pine beetle (MPB) and related post‐harvest slash burning practices. BC forest biomass has also become a major source of wood pellets, exported primarily for bioenergy to Europe, although the sustainability and net carbon emissions of forest bioenergy in general are the subject of current debate. We simulated the temporal carbon balance of BC wood pellets against different reference scenarios for forests affected by MPB in the interior BC timber harvesting area using the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3). We evaluated the carbon dynamics for different insect‐mortality levels, at the stand‐ and landscape level, taking into account carbon storage in the ecosystem, wood products and fossil fuel displacement. Our results indicate that current harvesting practices, in which slash is burnt and only sawdust used for pellet production, require between 20–25 years for beetle‐impacted pine and 37–39 years for spruce‐dominated systems to reach pre‐harvest carbon levels (i.e. break‐even) at the stand‐level. Using pellets made from logging slash to replace coal creates immediate net carbon benefits to the atmosphere of 17–21 tonnes C ha?1, shortening these break‐even times by 9–20 years and resulting in an instant carbon break‐even level on stands most severely impacted by the beetle. Harvesting pine dominated sites for timber while using slash for bioenergy was also found to be more carbon beneficial than a protection reference scenario on both stand‐ and landscape level. However, harvesting stands exclusively for bioenergy resulted in a net carbon source unless the system contained a high proportion of dead trees (>85%). Systems with higher proportions of living trees provide a greater climate change mitigation if used for long lived wood products.  相似文献   

7.
The conservation of many freshwater marsh waterbirds (i.e., waterfowl, shorebirds, wading birds, and secretive marshbirds) in the Laurentian Great Lakes requires managing invasive emergent macrophytes, which degrade waterbird habitat by creating dense, litter-clogged stands, and excluding plants that produce nutritionally balanced and high-energy food (seeds, tubers, and submerged aquatic vegetation). The most commonly used management approach in the United States Great Lakes region involves the application of herbicides, which can stimulate waterbird forage plants but does not address the accumulation of plant litter, the underlying cause of plant community diversity loss and habitat degradation. We experimentally evaluated the effects of an alternative approach, harvesting invasive plants and their litter followed by flooding, on plant communities, focusing on the effects of these treatments to increase the abundance of high-energy wetland plants. At the Shiawassee National Wildlife Refuge in Michigan, USA, we experimentally treated an invasive cattail (Typha × glauca)-dominated wetland in August and September of 2016, 2017, and 2018, using a randomized block design with 4 blocks and 3 treatments (sediment surface harvest, above ground harvest, and control). We monitored the effects of these treatments on the abundance and dominance of waterbird forage-producing plants, plant diversity, and plant communities prior to (Jul 2016) and during the summer following each treatment (late Jul or early Aug 2017, 2018, and 2019). Additionally, we used pre- and post-treatment waterbird use-day data collected at the unit scale and compared values with satellite imagery-derived land cover changes. Compared to control plots, 3 years of harvesting and flooding significantly increased plant species diversity, increased the abundance of waterbird seed- and tuber-producing plant species by 5 times, and increased annual plant dominance by more than 10 times, while substantially reducing all measures of cattail and its litter. Use-days increased for total waterbirds, including waterfowl and dabbling ducks, following treatment. Cattail cover decreased and open water and non-cattail emergent vegetation cover increased. Harvesting invasive plant biomass coupled with flooding promoted a plant community composition and structure beneficial to waterbirds. © 2020 The Wildlife Society.  相似文献   

8.
The understory of exotic tree plantations can have non‐negligible native species richness. Ecological restoration of these sites may include the harvest of trees, depending on the tradeoff between timber income and harvest impacts on biodiversity. This study aimed to investigate how a site can recover from harvest disturbance, by comparing the regeneration of woody species in the understory of two types of 37‐year‐old Pinus taeda plantation (P1 and P2, high and low relative density of pine seedlings in the understory, respectively), with stands that were similar to P2 but subjected to harvest and then abandoned for 15 years (R sites). Secondary forests (SF) were used as references. We sampled three different sites for each stand condition; soil chemical properties, estimations of litter mass, and canopy cover were measured. P1 had low species diversity, and P2 and R had 50 and 46% of SF richness, respectively. The R site contained few pine saplings and was floristically similar to P2; this indicated that 15 years was sufficient for the recovery of plant diversity to near pre‐harvesting levels. Soil fertility was highest in SF and lowest in P1. Thus old plantations of P. taeda with low relative density of pine juveniles can be cost‐effective starting points for restoration. Despite the destructive effects of pine harvest, recovery of native species can occur rapidly. In situations in which clearcutting of pine stands is not planned or possible, modest thinning of P. taeda adults and/or intensive thinning of juveniles could expedite restoration.  相似文献   

9.
Many factors influence which plant species are found in a particular wetland. The species pool is composed of the species present in the seed bank and species able to disperse into the wetland, and many abiotic and biotic factors interact to influence a species performance and abundance in the plant community. Anthropogenic activities produce specific stressors on wetland systems that alter these abiotic and biotic interactions, potentially altering species composition. We simulated three common wetland hydrogeomorphic (HGM) subclasses in a greenhouse to examine the effects of two stressors-sedimentation and nitrogen (N) enrichment-on the performance of 8 species grown in artificial communities. Species establishment, height, biomass, and foliar N and P concentrations were measured to explore species responses to stressors and competition, as well as the potential impacts of changes in species composition on ecosystem processes. Species were affected differently by sedimentation and N enrichment, and there were differences in overall community sensitivity to stressors between wetland subclasses. Sedimentation generally reduced seedling establishment, while N enrichment produced variable effects on height and biomass. Interspecific competition had little effect on establishment but significantly reduced most species biomass. Sedimentation generally lowered community biomass, diversity, and richness, while enrichment increased community biomass. Establishment, biomass, and foliar nutrient concentrations significantly differed between many species, suggesting that shifts in species composition may impact ecosystem processes such as nutrient cycling and carbon storage. Phalaris arundinacea, an aggressive clonal graminoid, universally dominated all wetland subclasses. This dominance across a range of environmental conditions (sedimentation, fertility, and hydrology) has important implications for both restoration and predicting the impacts of human activities on species composition. Our results suggest that, in regions where P. arundinacea is common, restoration projects that establish communities from seeds and human activities that cause vegetation removal are likely to become dominated by P. arundinacea.  相似文献   

10.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

11.
Honey mesquite (Prosopis glandulosa Torr.), a multistemmed tree that grows on grasslands and rangelands in the South Central USA (Texas, Oklahoma, and New Mexico), may have potential as a bioenergy feedstock due to a large amount of existing standing biomass and significant regrowth potential following initial harvest. The objective of this research was to determine the cost to harvest, store, and deliver mesquite biomass feedstock to a bioelectricity plant under the assumption that the rights to harvest mesquite could be acquired in long-term leases. The advantage of mesquite and similar rangeland shrubs as bioenergy feedstocks is that they do not grow on land better suited for growing food or fiber and thus will not impact agricultural food markets as corn grain ethanol has done. In addition, there are no cultivation costs. Results indicated that mesquite biomass density (Mg?ha?1) and harvesting costs are major factors affecting cost of delivered biomass. Annual biomass consumption by the bioelectricity plant and percent of the total system area that contains biomass density that is suitable for harvest significantly affected land- related factors including total system area needed per bioelectricity plant and transport costs. Simulation results based on actual biomass density in Texas showed that higher and more spatially consistent biomass density would be an important factor in selecting a potential location for the bioelectricity plant. Harvesting mesquite has the potential for bioenergy feedstock given certain densities and total land areas since higher harvest and transport costs are offset by essentially no production costs.  相似文献   

12.
Recognition of wetland ecosystem services has led to substantial investment in wetland restoration in recent decades. Wetland restorations can be designed to meet numerous goals, among which reestablishing a diverse native wetland plant community is a common aim. In agricultural areas, where previously drained wetland basins can fill with eroded sediment from the surrounding landscape, restoration often includes excavation to expose buried seed banks. The extent to which excavation improves the diversity of wetland plant communities is unclear, particularly in terms of longer‐term outcomes. We examined plant species diversity and community composition in 24 restored agricultural wetlands across west‐central Minnesota, U.S.A. In all study wetlands, hydrology was restored by removing subsurface drainage and plugging drainage ditches, thus reestablishing groundwater connectivity and hydroperiod (“business as usual” treatment). In half of the wetlands, accumulated sediment was removed from the basin and redeposited on the surrounding landscape (“excavated” treatment). Initially, sediment removal significantly decreased invasive species cover, particularly of hybrid cattail (Typha × glauca) and reed canary grass (Phalaris arundinacea), and increased community diversity and evenness. Over time, the effects of sediment removal diminished, and eventually disappeared by approximately 6 years after restoration. While our results demonstrate that sediment removal improves initial restoration outcomes for plant communities, longer‐term benefits require sustained management, such as invasive species control or resetting of basins through additional excavation.  相似文献   

13.
Selected nitrogen and phosphorus pools in two freshwater tidal marsh ecosystems on the lower Connecticut River were measured relative to Phragmites, Typha and mixed native wetland plant cover types. For both the Chapman Pond Preserve and Chester Creek Marsh, significant differences were found between plant cover types in porewater ammonium and phosphate for some months during the 1998 growing season; porewater nitrate was always below the detection limit. At Chapman Pond, no significant differences were detected between Phragmites and Typha for plant tissue N concentrations. The standing stock of nitrogen was higher in Phragmites stands, however, owing to its greater aboveground biomass. No significant difference was found between plant cover types for total soil N at Chapman Pond, but KCl extractable ammonium was higher in the mixed cover type than Phragmites or Typha. The results of this study suggest that Phragmites is affecting nutrient pools in freshwater tidal marshes, a result that should be considered in future management design.  相似文献   

14.
Aim We developed an ecosystem classification within a 110,000‐ha Arizona Pinus ponderosa P. & C. Lawson (ponderosa pine) landscape to support ecological restoration of these forests. Specific objectives included identifying key environmental variables constraining ecosystem distribution and comparing plant species composition, richness and tree growth among ecosystems. Location The Coconino National Forest and the Northern Arizona University Centennial Forest, in northern Arizona, USA. Methods We sampled geomorphology, soils and vegetation on 66 0.05‐ha plots in open stands containing trees of pre‐settlement (c. 1875) origin, and on 26 plots in dense post‐settlement stands. Using cluster analysis and ordination of vegetation and environment matrices, we classified plots into ecosystem types internally similar in environmental and vegetational characteristics. Results We identified 10 ecosystem types, ranging from dry, black cinders/Phacelia ecosystems to moist aspen/Lathyrus ecosystems. Texture, organic carbon and other soil properties reflecting the effects of parent materials structured ecosystem distribution across the landscape, and geomorphology was locally important. Plant species composition was ecosystem‐specific, with C3Festuca arizonica Vasey (Arizona fescue), for instance, abundant in mesic basalt/Festuca ecosystems. Mean P. ponderosa diameter increments ranged from 2.3–4.3 mm year?1 across ecosystems in stands of pre‐settlement origin, and the ecosystem classification was robust in dense post‐settlement stands. Main conclusions Several lines of evidence suggest that although species composition may have been altered since settlement, the same basic ecosystems occurred on this landscape in pre‐settlement forests, providing reference information for ecological restoration. Red cinders/Bahia ecosystems were rare historically and > 30% of their area has been burned by crown fires since 1950, indicating that priority could be given to restoring this ecosystem's remaining mapping units. Ecosystem classifications may be useful as data layers in gap analyses to identify restoration and conservation priorities. Ecosystem turnover occurs at broad extents on this landscape, and restoration must accordingly operate across large areas to encompass ecosystem diversity. By incorporating factors driving ecosystem composition, this ecosystem classification represents a framework for estimating spatial variation in ecological properties, such as species diversity, relevant to ecological restoration.  相似文献   

15.
Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no‐migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (?14%) across latitudes in Europe and North America. Species richness and evenness of south‐latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and species richness for temperate wetland plant communities across continents, latitudes, and migration scenarios.  相似文献   

16.
Summary Broadscale land‐clearing in the Queensland Brigalow Belt has resulted in widespread decline in ecological values including biodiversity loss and impairment of ecosystem processes and functions. More than 90% of brigalow ecological communities, i.e. those that have Acacia harpophylla, F. Muell. ex Benth (Brigalow) as a dominant and co‐dominant, have been entirely cleared or severely degraded in recent decades. In spite of this wide‐ranging disturbance, partial ecological recovery may be possible in the Queensland Brigalow Belt through the retention of regrowth brigalow stands. Few studies, however, have quantitatively examined brigalow vegetation succession, particularly in the context of cost‐effective ecological restoration. This study used a chronosequence approach to examine how species richness, abundance and structure change in brigalow woodlands with years since clearing. Floristic and structural characteristics were surveyed in 18 brigalow stands, of varying years since clearing, in the southern Queensland Brigalow Belt. Linear models were fitted for years since clearing versus total number of woody species, tree cover, shrub cover, herbaceous cover and litter cover. Regrowth brigalow communities were found to follow the inhibition model of succession, with Acacia harpophylla assuming dominance. The linear models suggested that at least 90 years of recovery would be required post‐clearing, before regrowth woodlands regained 90% of the species richness and structural characteristics of mature woodlands. Management practices such as thinning the dominant species and allowing for the accumulation of logs and litter may be necessary for promoting recovery of vegetation diversity and structural heterogeneity.  相似文献   

17.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

18.
Concerns over energy demands and climate change have led the United States to set ambitious targets for bioenergy production in the coming decades. The southeastern United States has had a recent increase in biomass woody pellet production and is projected to produce a large portion of the nation's cellulosic biofuels. We conducted a large‐scale, systematic comparison of potential impacts of two types of bioenergy feedstocks – corn (Zea mays) and pine (Pinus spp.) – on bird communities across the southeastern United States. In addition, we evaluated three biomass alternatives for woody biomass from pine plantations: thinning, residue harvest, and short‐rotation energy plantations (SREPs). We conducted transect counts for birds in eight different land uses across the region (85 sites), including corn fields, reference forest, and plantation forests, 2013–2015. We then used hierarchical occupancy models to test the effect of these biomass alternatives on 31 species. Across all species, birds had lower rates of occupancy in corn fields compared to pine stands. Thinning had positive effects on the average occupancy across species, while residue harvest and the potential conversion of conventional plantations to SREPs had negative effects. Cavity nesters and species with bark‐gleaning foraging strategies tended to show the strongest responses. These results highlight the potential negative effects of corn as an energy crop relative to the use of pine biomass. In addition, harvesting biomass via thinning was a bird‐friendly harvest method in comparison with other alternatives. While SREPs may negatively impact some bird species, previously reported yields emphasize that they may provide an order of magnitude greater yield per unit area than other alternatives considered, such that this land‐use practice may be an important alternative to minimize the bioenergy impacts across the landscape.  相似文献   

19.
Invasive plants dramatically shift the structure of native wetland communities. However, less is known about how they affect belowground soil properties, and how those effects can vary depending on time since invasion. We hypothesized that invasion of a wetland by a widespread invasive plant (Typha × glauca) would result in changes in soil nutrients, denitrification, and bacterial communities, and that these effects would increase with time since invasion. We tested these hypotheses by sampling Typha-invaded sites of different ages (~40, 20, and 13 years), a Typha-free, native vegetation site, and a restored site (previously invaded ~30–40 years ago) but that had Typha return within 2 years of the restoration. At each site, we measured Typha stem density, plant species richness, soil nutrients, denitrification rates, and the abundance and composition of bacterial denitrifier communities. All Typha-dominated sites had the least plant species richness regardless of time since invasion. Additionally, sites that were invaded the longest exhibited significantly higher concentrations of soil organic matter, nitrate, and ammonium than the native site. In contrast, denitrification was higher in sites invaded more recently. Denitrifier diversity for the nirS gene was also significantly different, with highest nirS diversity in sites invaded the longest. Interestingly, the denitrifier communities within the restored site were most similar to the ones in T. × glauca sites, suggesting a legacy effect. Our study suggests this invader can alter important ecosystem properties, such as native species richness, nutrient pools, and transformations, as well as bacterial community composition depending on time since invasion.  相似文献   

20.
Invasive plants and urban run‐off constrain efforts to restore sedge meadow wetlands. We asked if native graminoids can self‐restore following the removal of Typha × glauca (hybrid cattail), and if not, what limits their recovery? After we harvested Typha and depleted its rhizome starch reserves, Carex spp. expanded vegetatively (approximately 1 m over 2 years) but not by recruiting seedlings. A seedling emergence experiment showed that seed banks were depleted where Typha had eliminated the sedge meadow over a decade ago (based on aerial photo analysis). Carex seedling emergence was 75–90% lower where Carex was absent than where it remained in the plant community, and at least 17 species that were abundant 30 years ago were absent from the seed bank and extant vegetation. By varying hydroperiod, we showed that prolonged flooding prevented emergence of Carex seedlings and that a fluctuating hydroperiod reduced emergence and ultimately killed all Carex seedlings. In contrast, Typha seedlings emerged and survived regardless of hydroperiod. Thus, slow vegetative expansion by Carex, depauperate seed banks, and altered hydroperiods all constrain self‐restoration. To compensate for multiple constraints on self‐restoration, we recommend a long‐term management approach that capitalizes on flooding and the capacity of Carex spp. to regrow vegetatively. We suggest annually harvesting swaths of Typha at the edges of clones, before or during flood events, to allow gradual, vegetative self‐restoration of Carex spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号