首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphibians require specific habitats for breeding and loss or degradation of such habitats can negatively affect reproductive success. Oviposition site selection within a habitat is also important as site quality is linked to larval survivorship and metamorphic success. We investigated oviposition site preferences of the stream-breeding frog Limnonectes blythii in Singapore through surveys and habitat measurements of breeding and non-breeding sites(N = 30 and 32, respectively). The study species L. blythii is classified as Near Threatened(NT) in the IUCN red list and is associated with medium sized forest streams. L. blythii appeared to prefer streams with higher water p H and shallower water depths for oviposition. Our findings have implications in conservation management as it provides the baseline for habitat restoration for creation of new and for preserving existing breeding habitat of L. blythii.  相似文献   

2.
1. Activity and microhabitat use are important factors determining species performance in habitats that differ in permanence and species composition of top predators. This study examined the relationship between the distribution across a gradient of habitat permanence and an associated transition in the composition of top predators and the behaviour of species of larval dragonflies. It also assessed the relationship between larval behaviour, body size and the duration of the larval stage. In laboratory mesocosms the mobility of the different species was measured, as was the extent to which they associated with artificial vegetation. 2. Species mobility was positively related to their natural occurrence in habitats in which invertebrates or small‐bodied fish were the top predators, and negatively related with the frequency with which species co‐existed with large‐bodied fish, the permanence of the habitat and the length of the larval stage. 3. Rather than falling into strict low and high mobility categories, habitat generalists that occurred across the habitat gradient, co‐existing with different top predators, had variable mobility levels. In these generalists, mobility was positively related to how frequently they were found in natural habitats in which invertebrates were the top predators. 4. The extent to which species utilized the artificial vegetation in mesocosms was associated with the length of the larval period but was not associated with mobility or species habitat distribution in the field.  相似文献   

3.
Seasonal variation in large‐scale habitat selection by fishes in shallow, Canadian waters of the Detroit River was examined. Fish communities were compared among three river segments (upstream, middle and downstream) consisting of areas of shallow water habitat separated by wide hydrologic barriers of deep, flowing water and between inshore and offshore areas. In spring, the most unique, diverse and abundant fish assemblages were found at inshore sites in the middle segment where the largest remaining wetland habitats are located. Fishes used inshore habitat to spawn and probably avoided offshore areas because macrophyte cover was not available in spring. In summer, juvenile gizzard shad Dorosoma cepedianum and white bass Morone chrysops were observed in high densities in the upstream segment, probably migrating downstream from Lake St Clair. There was little difference in the fish assemblage among macrohabitats in autumn. The upstream segment appeared to be the most degraded, because it contained no species that were not found in the other segments, had a paucity of uncommon species and had significantly more non‐native species. This state was attributed to the infilling of coastal wetlands by urban land use and a resulting loss of habitat heterogeneity. The middle segment, with the only remaining wetland habitats, had the greatest occurrence of uncommon species and the only species at risk found in this study. Conservation and restoration efforts should be greatest for wetlands; however, shallow offshore areas provide important fish habitat in summer and autumn.  相似文献   

4.
1. The effects of channelisation on macroinvertebrates were examined in relation to a spate and flow refugia. Habitat components that can function as flow refugia were identified in a small, low‐gradient stream in northern Hokkaido, Japan. 2. Macroinvertebrates and their habitat characteristics (depth, current velocity and substratum) were sampled and measured in natural and channelised sections on three occasions: before, during and immediately after a spate. For macroinvertebrate sampling and habitat measurements, five (riffle, glide, pool, backwater and inundated habitats) and three (channelised‐mid, channelised‐edge and inundated habitats) habitat types were classified in the natural and channelised section, respectively. 3. The rate of velocity increase with discharge was compared among habitat types to determine which habitat types were less affected by increased discharge. The rate was the highest in riffles followed by glides and channelised‐mids. Backwaters maintained low current velocity even at high flow. In addition, current velocity in both natural and channelised inundated habitats was low relative to other habitat types during the spate. 4. Through the spate, total density of macroinvertebrates in channelised‐mids and taxon richness in both channelised‐mids and edges decreased. In the natural section, however, such a significant decrease was not found except for taxon richness in pools. This indicated that the spate had a greater impact on assemblages in the channelised section. Riffle assemblages exhibited a rapid recovery immediately after the spate, suggesting the existence of flow refugia in the natural section. Among the habitat types we examined, backwaters and inundated habitats appeared to have acted as flow refugia, because these habitats accumulated macroinvertebrates during the spate. 5. The lower persistence of the macroinvertebrate assemblage in the channelised section was attributable to the lower availability of flow refugia such as backwaters and inundated habitats. Our results emphasised the importance of considering flow fluctuations and refugia in assessing the effects of channelisation. In addition, the lateral heterogeneity of stream channels should be considered in stream restoration and management.  相似文献   

5.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

6.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

7.
Theory predicts that animals should prefer habitats where their fitness is maximized but some mistakenly select habitats where their fitness is compromised, that is, ecological traps. Understanding why this happens requires knowledge of the habitat selection cues animals use, the habitats they prefer and why, and the fitness costs of habitat selection decisions. We conducted experiments with a freshwater insect, the non‐biting midge Chironomus tepperi to ask: (a) whether females respond to potential oviposition cues, (b) to explore whether oviposition is adaptive in relation to metal pollution and conductivity, and (c) whether individuals raised in poor quality sites are more likely to breed in similarly poor locations. We found the following: (a) females responded to some cues, especially conductivity and conspecifics, (b) females preferred sites with higher concentrations of bioavailable metals but suffered no consequences to egg/larval survival, (c) females showed some avoidance of high conductivities, but they still laid eggs resulting in reduced egg hatching, larval survival, and adult emergence, and (d) preferences were independent of natal environment. Our results show that C. tepperi is susceptible to ecological traps, depending on life stage and the relative differences in conductivities among potential oviposition sites. Our results highlight that (a) the fitness outcomes of habitat selection need to be assessed across the life cycle and (b) the relative differences in preference/suitability of habitats need to be considered in ecological trap research. This information can help determine why habitat preferences and their fitness consequences differ among species, which is critical for determining which species are susceptible to ecological traps.  相似文献   

8.
To combat decades of anthropogenic degradation, restoration programs seek to improve ecological conditions through habitat enhancement. Rapid assessments of condition are needed to support adaptive management programs and improve the understanding of restoration effects at a range of spatial and temporal scales. Previous attempts to evaluate restoration practices on large river systems have been hampered by assessment tools that are irreproducible or metrics without clear connections to population responses. We modified a demonstration flow assessment approach to assess the realized changes in habitat quantity and quality attributable to restoration effects. We evaluated the technique's ability to predict anadromous salmonid habitat and survey reproducibility on the Trinity River in northern California. Fish preference clearly aligned with a priori designations of habitat quality: the odds of observing rearing Chinook or coho salmon within high‐quality habitats ranged between 10 and 16 times greater than low qualities, and in all cases the highest counts were associated with highest quality habitat. In addition, the technique proved to be reproducible with “substantial” to “almost perfect” agreement of results from independent crews, a considerable improvement over a previous demonstration flow assessment. These results support the use of the technique for assessing changes in habitat from restoration efforts and for informing adaptive management decisions.  相似文献   

9.
The severe loss or degradation of riparian habitats has led to their impoverishment and impaired function, which may have severe consequences on both the riparian habitats themselves and their associated biota, including mammalian carnivores. We selected 70 riparian habitat reaches to evaluate the condition of the riparian habitats in southern Portugal and their use by carnivores. These sites were assessed for riparian condition using the stream visual assessment protocol (SVAP) and surveyed for carnivore presence along the riparian zones and across the surrounding matrix landscape, both in the wet (winter) and the dry (summer) season. Results show that carnivore surveys adjacent to riparian habitats consistently had significantly higher species richness than the matrix habitats, in both sampling seasons. Carnivore relative abundance and relative abundance of stone marten, common genet and Egyptian mongoose also showed higher values in riparian habitats, with significant differences in at least one season. The Eurasian badger, on the other hand, showed higher relative abundance values in the landscape matrix, though differences were not significant. The SVAP index ranked about 83% riparian reaches as poor or fair condition, and species richness was significantly higher in fair condition reaches during the wet season. These results reflect the importance of riparian habitats in Mediterranean ecosystems for mammalian carnivores. However, the generalized poor condition of these habitats suggests that direct measures for riparian restoration could be appropriate. The preservation or improvement of riparian habitats would certainly benefit the mammalian carnivore populations and consequently their conservation.  相似文献   

10.
Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high‐quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high‐quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution.  相似文献   

11.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

12.
In areas with intensive land use, such as the Netherlands, habitat fragmentation and loss of habitat quality due to eutrophication and drainage are major threats to the preservation of species‐rich communities of heathland and acid grassland. Restoration of such nutrient‐poor habitats may be carried out by removing the topsoil from ex‐arable land, in order to lower the nutrient levels. However, the establishment of target plant communities is known to be fragmentary. The current study shows that this also applies to butterflies. Ten years after topsoil removal in eight study areas, on average, only 3.5 of 10 characteristic heathland species were recorded on the sites. Species that did colonize had a significantly lower density than in the source populations. Our study indicates that although isolation effects were limiting colonization, poor habitat quality was the main limiting factor, mainly due to lack of host plants, hydrological conditions, and, to a lesser extent, lack of nectar plants and excessive residual nutrient levels. An experiment with the introduction of cut heather in one study area showed a significantly higher abundance of both target and nontarget butterflies in manipulated sites than in control sites. It can be concluded that habitat restoration by topsoil removal can be successful for butterflies of especially wet heathland habitats, provided that source populations are at close range and care is taken that complete plant communities are restored.  相似文献   

13.
Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.  相似文献   

14.
Many successful invasions have taken place in systems where harmful disturbance has changed habitat conditions. However, less attention has been paid to the role of habitat restoration, which modifies habitats and thus also has the potential to facilitate invasions. We examined whether in‐stream habitat restorations have the potential to either facilitate or resist invasion by two widely introduced non‐native stream salmonids, Salvelinus fontinalis Mitchill and Oncorhynchus mykiss Walbaum, in Finland. A physical habitat simulation system was used to calculate whether the habitat area for the target species increased or decreased following the restorations. For comparison, we also reported results for four native stream fish species. The simulations showed that the restored streams provided the highest amount of usable habitat area for the native species, particularly for Salmo salar L. and Gottus gobio L. However, it was interesting to note that the restorations significantly increased habitat quality for the two non‐native species, especially at low flows. Nevertheless, the non‐native species had the lowest amount of usable habitat area overall. The modeling results indicated that not only habitat destruction but also habitat restoration could contribute to the spread of non‐native species. Fisheries and wildlife managers should be aware of the possibility, when restoring habitats in order to preserve native ecosystems, that non‐native species could manage to gain a foothold in restored habitats and use them as population sources for further spread. Knowing the widespread negative effect of non‐native species, this risk should not be underestimated.  相似文献   

15.
1. Per‐capita resource availability in aquatic habitats is influenced directly by consumer density via resource competition and indirectly via delayed resource competition when temporally non‐overlapping cohorts of larvae exploit the same resources. In detritus‐based systems, resources are likely to be influenced by the age of the aquatic habitat, as detritus changes in quality over time and may be replenished by new inputs. 2. For aquatic insects that exploit detritus‐based habitats, feeding conditions experienced during immature stages can influence fitness directly via effects on development and survivorship, but also indirectly by influencing adult traits such as fecundity and longevity. 3. Larval habitat age and prior resource exploitation were manipulated in a field experiment using the container mosquito Aedes triseriatus. 4. It was found that A. triseriatus from older habitats had greater larval survival, faster development and greater adult longevity. Exploitation of larval habitats by a prior cohort of larvae had a significant negative effect on subsequent cohorts of larvae by delaying development. 5. It is suggested that extended conditioning of detritus probably resulted in conversion of recalcitrant resources to more available forms which improved the quality of the habitat. 6. In a parallel study, evidence was found of carry‐over effects of habitat age and prior exploitation on adult longevity for A. triseriatus and Aedes japonicus collected from unmanipulated aquatic habitats. 7. These results indicate the importance of detritus dynamics and the discontinuous nature of resource competition in these mosquito‐dominated aquatic systems.  相似文献   

16.
Glucocorticoids (GCs) are often interpreted as indicators of disturbance, habitat quality, and fitness in wild populations. However, since most investigations have been unable to examine habitat variability, GC levels, and fitness simultaneously, such interpretations remain largely unvalidated. We combined a quantification of two habitat types, a manipulation of foraging ability (feather‐clipping just prior to nestling rearing), multiple baseline plasma GC measures, and multi‐year reproductive monitoring to experimentally examine the linkages between habitat quality, GCs, and fitness in female tree swallows Tachycineta bicolor. Control females experiencing the higher early‐season food resources of inland–pasture habitat laid larger clutches, but fledged an equal number but lower mass offspring compared to those in riparian–cropland habitat. Despite these differences in reproductive success, females nesting in the two habitat types did not differ in baseline GC levels at the early‐ or late‐breeding stage. Feather‐clipping reduced provisioning rate in both habitat types. However, baseline GC levels were affected in a habitat‐specific way; only individuals in inland–pasture habitats showed an increase in GCs. Despite this difference in GC levels, the manipulation did not influence offspring mass, reproductive output, adult return rate (a proxy for survival) to the following year, or reproductive success in the subsequent year. Nonetheless, regardless of treatment, individuals with higher GC levels during the late breeding stage returned in the following year with higher GC levels at incubation, indicating a long‐term effect on future GC levels. Our results indicate that environmental changes (e.g. foraging conditions) can have consequences for body condition, behaviour, and current and future baseline GC levels without concomitant influences on fitness, and that differences in fitness components between habitats may not be reflected in baseline GC levels. These results illustrate that baseline GCs may not simultaneously reflect environmental quality and fitness, potentially limiting their application in ecological and conservation settings.  相似文献   

17.
18.
Many species, including most amphibians, undergo an ontogenetic niche shift (ONS) from an aquatic larval stage to a terrestrial adult stage. We use the ratio of aquatic to terrestrial habitat in a landscape as a tool to understand the influence of landscape context on the population growth of ONS species. The aquatic to terrestrial ratio (ATR) of habitats can be viewed as an analog to the influence of resource ratios on the population growth of consumers and depends on the degree to which each habitat type limits the growth of a given population. Population growth rates of shorter‐lived species tend to be more limited by demographic rates in early (aquatic) life stages. As a result, increasing the ATR should lead to a higher total population size in the landscape (and higher densities in the terrestrial habitat), but have little influence on the density of individuals in any given aquatic habitat. Alternatively, population growth rates of longer‐lived species tend to be more limited by demographic rates in later (terrestrial) life stages and increasing the ATR should have little influence on the total population size in the landscape, but decrease the density of individuals in any given aquatic habitat. We show that among‐landscape variation in the breeding‐pond densities of three widespread amphibians with contrasting life histories is consistent with this framework. Within‐pond densities of Pseudacris crucifer, a species with short‐lived adults, were not influenced by ATR, whereas within‐pond densities of Hyla versicolor, a longer‐lived member of the same family (Hylidae), declined as ATR increased. Ambystoma maculatum, a long‐lived salamander, also had lower densities in ponds with higher ATR. Because A. maculatum larvae are important predators in ponds, we use structural equation modeling to show that landscape context (ATR) can moderate community structure via direct (amphibian abundances) and indirect (prey species richness) effects.  相似文献   

19.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

20.
Land use is likely to be a key driver of population dynamics of species inhabiting anthropogenic landscapes, such as farmlands. Understanding the relationships between land use and variation in population growth rates is therefore critical for the management of many farmland species. Using 24 years of data of a declining farmland bird in an integrated population model, we examined how spatiotemporal variation in land use (defined as habitats with “Short” and “Tall” ground vegetation during the breeding season) and habitat‐specific demographic parameters relates to variation in population growth taking into account individual movements between habitats. We also evaluated contributions to population growth using transient life table response experiments which gives information on contribution of past variation of parameters and real‐time elasticities which suggests future scenarios to change growth rates. LTRE analyses revealed a clear contribution of Short habitats to the annual variation in population growth rate that was mostly due to fledgling recruitment, whereas there was no evidence for a contribution of Tall habitats. Only 18% of the variation in population growth was explained by the modeled local demography, the remaining variation being explained by apparent immigration (i.e., the residual variation). We discuss potential biological and methodological reasons for high contributions of apparent immigration in open populations. In line with LTRE analysis, real‐time elasticity analysis revealed that demographic parameters linked to Short habitats had a stronger potential to influence population growth rate than those of Tall habitats. Most particularly, an increase of the proportion of Short sites occupied by Old breeders could have a distinct positive impact on population growth. High‐quality Short habitats such as grazed pastures have been declining in southern Sweden. Converting low‐quality to high‐quality habitats could therefore change the present negative population trend of this, and other species with similar habitat requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号