首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
p62 is a cancer-associated antigen binding to mRNA encoding insulin-like growth factor II that was isolated by immunoscreening a cDNA expression library with autoantibodies from patients with hepatocellular carcinoma (HCC). In the present study, multiple methods including flow cytometry, confocal laser-scanning microscope, electron microscope were used to characterize the effect of ATRA on BGC-823 cells, which presented two phenotypes of differentiation and apoptosis in cells treated with 1.0 and 50 microM ATRA, respectively. Interestingly, we found that p62 was cytoplasmic in location, but it significantly decreased in cytoplasm and appeared in nucleus of cells when the cells were treated with 50 microM all-trans retinoic acid (ATRA) for 5 days. Furthermore, proteomics approach on differential nucleus proteins showed that the up-regulation and/or down-regulation of cell cycle proteins and IGF binding proteins were involved in the apoptosis of BGC-823 cells induced by ATRA. These results suggest that there is a significant association between expression and distribution of p62 and the growth arrest of tumor cells, in which p62 is associated with cell apoptosis induced by ATRA.  相似文献   

2.
3.
Recent in situ hybridization experiments have shown a high content of IGF-II mRNA in breast cancer stroma. The aim of this study was to examine the relationship between IGF-II protein expression and several prognostic parameters in 75 infiltrating ductal carcinomas (IDC) of the breast. Tissue sections were evaluated for proliferative activity, IGF-II protein, ER, PgR, p53, and p21 expression using immunohistochemical procedures. The degree of stromal proliferation was assessed. Menopausal status, axillary lymph node involvement and nuclear grade were known. Thirty-five patients (44.3%) were premenopausal and 47 (62.6%) had lymph node metastases. Marked stromal proliferation was found in 34 (45.3%) specimens and high nuclear grade in 20 (26.5%). Eighteen tumors (24%) showed no IGF-II immunostaining. In the positive cases, IGF-II was detected both in the tumor stroma and in the cytoplasm of epithelial cancer cells: a high IGF-II content was found in 12 specimens (16.0%), a low content in 14 (18.7%) and a moderate content in 31 (41.3%). Twenty-four tumors (32.0%) showed high proliferative activity. Both ER and PgR were expressed in the nucleus of cancer cells: 49 tumors (65.3%) were ER positive (ER+) and 34 (45.3%) PgR positive (PgR+). p21 protein was detected in 37 tumors (49.6%) and p53 in 12 (16%). IGF-II protein was not correlated with menopausal status, lymph node metastases, nuclear grade, proliferative activity, ER or p53. In contrast, IGF-II correlated strongly with stromal proliferation (p=0.008), PgR (p=0.03) and p21 (p=0.01). This study demonstrates that in IDC of the breast IGF-II protein is expressed in the epithelium and stroma of the majority of tumors and is correlated with stromal amount, PgR and p21 expression. These preliminary results indicate that IGF-II expression in breast cancer is connected with two important regulators of breast cancer growth and differentiation.  相似文献   

4.
To reveal growth factor and its signal pathway to CCAAT/enhancer binding protein alpha (C/EBPalpha) in hepatocyte differentiation, we used Huh-6 and HepG2, human hepatoblastoma (HBL) cell lines that maintain the expression of genes in hepatoblasts and remain at that stage of differentiation. Insulin-like growth factor (IGF)-II, hepatocyte growth factor (HGF), and dexamethasone (Dex) stimulated HBL cells for Northern blot analysis. Bromodeoxyuridine (BrdU) up-take assay and Western blot analysis on albumin was performed to unveil proliferation and differentiation activity of IGF-II. C/EBPalpha and phosphorylation of Akt were analyzed by Western blot analysis. LY294002 and wortmannin, specific inhibitors of PI3 kinase, and PD98059, a specific inhibitor of mitogen-activated protein (MAP) kinase, were used to examine the signaling pathway of C/EBPalpha upregulated by IGF-II. Luciferase assay was performed to study the promoter activity of C/EBPalpha. Actinomycin D was used to analyze half-life of C/EBPalpha mRNA. IGF-II up-regualted C/EBPalpha by Northern blot and Western blot while HGF and Dex did not by Northern blot. IGF-II promoted proliferation and differentiation by BrdU up-take assay and Western blot analysis on albumin. Akt phosphorylated by IGF-II, suggested that phosphatidyl-inositol (PI) 3 kinase mediated the signaling pathway of IGF-II. LY294002 and wortmannin suppressed expression of C/EBPalpha. IGF-II activated the promoter activity and prolonged half-life of mRNA, suggesting that IGF-II activated promoter and stabilized mRNA. LY294002 and wortmannin suppressed the promoter activity of C/EBPalpha while PD98059 did not, suggesting that activation of the promoter was mediated by PI3 kinase.  相似文献   

5.
Signal transduction within the nucleus by mitogen-activated protein kinase.   总被引:30,自引:0,他引:30  
The nucleus is an important target of signal transduction by growth factor receptors that stimulate mitogen-activated protein (MAP) kinases. We tested the hypothesis that MAP kinases have a signaling role within the nucleus by examining the effect of the expression of a human MAP kinase isoform (p41mapk) in tissue culture cells. The expressed p41mapk was found to be localized in both the cytoplasmic and nuclear compartments of the cells. Significantly, the expression of p41mapk caused an increase in the phosphorylation of a nuclear substrate: Ser62 of c-Myc. Phosphorylation at Ser62 stimulated the activity of the NH2-terminal transactivation domain of c-Myc. Thus, p41mapk causes the phosphorylation and regulation of a physiologically significant nuclear target of signal transduction. These data establish that at least one MAP kinase isoform has a nuclear role during signal transduction.  相似文献   

6.
7.
Expression of vascular endothelial growth factor (VEGF) increases in cancer cells during hypoxia. Herein, we report that the MDM2 oncoprotein plays a role in hypoxia-mediated VEGF upregulation. In studying the characteristics of MDM2 and VEGF expression in neuroblastoma cells, we found that hypoxia induced significantly higher upregulation of both VEGF mRNA and protein in MDM2-positive cells than in the MDM2-negative cells, even in cells without wild-type (wt) p53. We found that hypoxia induced translocation of MDM2 from the nucleus to the cytoplasm, which was associated with increased VEGF expression. Enforcing overexpression of cytoplasmic MDM2 by transfection of the mutant MDM2/166A enhanced expression of VEGF mRNA and protein production, even without hypoxia. The results of mechanistic studies demonstrated that the C-terminal RING domain of the MDM2 protein bound to the AU-rich sequence within the 3' untranslated region (3'UTR) of VEGF mRNA; this binding increased VEGF mRNA stability and translation. In addition, knockdown of MDM2 by small interfering RNA (siRNA) in MDM2-overexpressing cancer cells resulted in inhibition of VEGF protein production, cancer cell survival, and angiogenesis. Our results suggest that MDM2 plays a p53-independent role in the regulation of VEGF, which may promote tumor growth and metastasis.  相似文献   

8.
Insulin-like growth factors (IGFs) are potent mitogens for a variety of cancer cells in vitro. A paracrine/autocrine role of IGF-II in the growth of breast and prostate cancer cells has been suggested. Information on cell-type-specific IGF-II expression in vivo in the breast and prostate is, however, limited. Thus, cell types expressing IGF-II mRNA and protein in tumors were identified by in situ hybridization and immunohistochemistry. Of 36 prostate, 17 breast, and 10 bladder cancers, and 9 paraganglioma tissues examined, IGF-II was expressed in more than 50% of prostate, breast, and bladder tumors, and in 100% of paraganglioma tumors. Expression levels of IGF-II were highest in the paraganglioma and bladder followed by prostate and breast tumors. In all the tumors expressing IGF-II, both mRNA and protein were localized to malignant cells, expression in the stroma being minimal. Since previous studies had indicated that an incompletely processed form of 15-kDa IGF-II exhibited higher mitogenic potency than the completely processed 7.5-kDa IGF-II form, the quantity and size of IGF-II proteins expressed in these tumors were analyzed by Western immunoblotting. Greater expression of 15-kDa IGF-II relative to the 7.5-kDa IGF-II form was clearly demonstrated in all six prostate cancers and in half of the two breast and four bladder cancers examined. The results are consistent with the hypothesis that the 15-kDa form of IGF-II expressed in cancerous cells contributes to autocrine cancer cell growth in vivo. Received: 11 June 1997 / Accepted: 22 August 1997  相似文献   

9.
IMP-3, a member of the insulin-like growth factor-II (IGF-II) mRNA-binding protein (IMP) family, is expressed mainly during embryonic development and in some tumors. Thus, IMP-3 is considered to be an oncofetal protein. The functional significance of IMP-3 is not clear. To identify the functions of IMP-3 in target gene expression and cell proliferation, RNA interference was employed to knock down IMP-3 expression. Using human K562 leukemia cells as a model, we show that IMP-3 protein associates with IGF-II leader-3 and leader-4 mRNAs and H19 RNA but not c-myc and beta-actin mRNAs in vivo by messenger ribonucleoprotein immunoprecipitation analyses. IMP-3 knock down significantly decreased levels of intracellular and secreted IGF-II without affecting IGF-II leader-3, leader-4, c-myc, or beta-actin mRNA levels and H19 RNA levels compared with the negative control siRNA treatment. Moreover, IMP-3 knock down specifically suppressed translation of chimeric IGF-II leader-3/luciferase mRNA without altering reporter mRNA levels. Together, these results suggest that IMP-3 knock down reduced IGF-II expression by inhibiting translation of IGF-II mRNA. IMP-3 knock down also markedly inhibited cell proliferation. The addition of recombinant human IGF-II peptide to these cells restored cell proliferation rates to normal. IMP-3 and IMP-1, two members of the IMP family with significant structural similarity, appear to have some distinct RNA targets and functions in K562 cells. Thus, we have identified IMP-3 as a translational activator of IGF-II leader-3 mRNA. IMP-3 plays a critical role in regulation of cell proliferation via an IGF-II-dependent pathway in K562 leukemia cells.  相似文献   

10.
The c-myc mRNA coding region determinant-binding protein (CRD-BP) was first identified as a masking protein that stabilizes c-myc mRNA in a cell-free mRNA degradation system. Thus, CRD-BP is thought to promote cell proliferation by maintaining c-Myc at critical levels. CRD-BP also appears to be an oncofetal protein, based upon its expression during mammalian development and in some tumors. By using K562 leukemia cells as a model, we show that CRD-BP gene silencing by RNA interference significantly promoted proliferation, indicating an inhibitory effect of CRD-BP on proliferation. Unexpectedly, CRD-BP knockdown had no discernible effect on c-myc mRNA levels. CRD-BP is also known as insulin-like growth factor II (IGF-II) mRNA-binding protein-1. It has been reported to repress translation of a luciferase reporter mRNA containing an IGF-II 5'-untranslated region known as leader 3 but not one containing IGF-II leader 4. CRD-BP knockdown markedly increased IGF-II mRNA and protein levels but did not alter translation of luciferase reporter mRNAs containing 5'-untranslated regions consisting of either IGF-II leader 3 or leader 4. Addition of antibody against IGF-II to cell cultures inhibited the proliferative effect of CRD-BP knockdown, suggesting that regulation of IGF-II gene expression, rather than c-myc mRNA levels, mediates the proliferative effect of CRD-BP knockdown. Thus, we have identified a dominant function for CRD-BP in cell proliferation of human K562 cells, involving a possible IGF-II-dependent mechanism that appears independent of its ability to serve as a c-myc mRNA masking protein.  相似文献   

11.
Neuronal apoptosis is involved in several pathological conditions of the brain. Using cDNA arrays, we observed upregulation of ubiquitin-binding protein p62 expression during serum withdrawal-induced apoptosis in Neuro-2a cells. We demonstrate here that the expression levels of p62 mRNA and protein were increased in Neuro-2a cells and cultured rat hippocampal neurons by different types of proapoptotic treatments, including serum deprivation, okadaic acid, etoposide, and trichostatin A. Ubiquitin-binding protein p62 is a widely expressed cytoplasmic protein of unclear function. The ability of p62 to bind noncovalently to ubiquitin and to several signalling proteins suggests that p62 may play a regulatory role connected to the ubiquitin system. Accordingly, we show that proteasomal inhibitors MG-132, lactacystin, and PSI caused a prominent upregulation of p62 mRNA and protein expression, with a concomitant increase in ubiquitinated proteins. To conclude, p62 upregulation appears to be a common event in neuronal apoptosis. Results also suggest that the induction of p62 expression by proteasomal inhibitors may be a response to elevated levels of ubiquitinated proteins, possibly constituting a protective mechanism.  相似文献   

12.
The biological effects of the insulin-like growth factors, IGF-I and IGF-II, on their receptors are modulated by IGF-binding proteins. Recently, we isolated a cDNA clone for one member of the family of IGF-binding proteins, BP-3A, a 30 kilodalton (kDa) protein synthesized by the BRL-3A rat liver cell line. BP-3A is related to but distinct from two other cloned IGF-binding proteins, the human amniotic fluid binding protein and the glycosylated binding subunit of the 150 kDa IGF-binding protein complex in serum. It is expressed in multiple nonneural tissues and in serum in the fetal rat and decreases after birth, similar to the developmental pattern of IGF-II expression. IGF-I, IGF-II, and their receptors are expressed in brain. The present study examines the expression of BP-3A in the rat central nervous system. By Northern blot analysis, BP-3A mRNA is present at high levels in brain stem, cerebral cortex, and hypothalamus from 21-day gestation rats and, like IGF-II mRNA, persists in adult rat brain. The site of BP-3A mRNA synthesis was localized by in situ hybridization to coronal sections of adult rat brain using 35S-labeled oligonucleotides, 48 bases in length, complementary and anticomplementary to the coding region of BP-3A. Specific hybridization of the BP-3A probe was observed exclusively to the choroid plexus extending from the level of the medial preoptic nucleus to the arcuate nucleus of the hypothalamus, similar to the previously reported preferential localization of IGF-II mRNA to the choroid plexus. Synthesis of BP-3A mRNA by choroid plexus suggested that BP-3A might be secreted into the cerebrospinal fluid. A 30 kDa IGF-binding protein was demonstrated in rat cerebrospinal fluid that is recognized by antibodies to BP-3A and, like purified BP-3A, has equal affinity for IGF-I and IGF-II. By analogy with other transport proteins synthesized by the choroid plexus, BP-3A may facilitate the secretion of IGF-II to the cerebrospinal fluid and modulate its biological actions at distant sites within the brain.  相似文献   

13.
Premature cranial suture fusion, or craniosynostosis, can result in gross aberrations of craniofacial growth. The biology underlying cranial suture fusion remains poorly understood. Previous studies of the Sprague-Dawley rat posterior frontal suture, which fuses at between 12 and 20 days, have suggested that the regional dura mater beneath the cranial suture directs the overlying suture's fusion. To address the dura-suture paracrine signaling that results in osteogenic differentiation and suture fusion, the authors investigated the possible role of insulin-like growth factors (IGF) I and II. The authors studied the temporal and spatial patterns of the expression of IGF-I and IGF-II mRNA and IGF-I peptide and osteocalcin (bone morphogenetic protein-4) protein in fusing posterior frontal rat sutures, and they compared them with patent coronal (control) sutures. Ten Sprague-Dawley rats were studied at the following time points: 16, 18, and 20 days of gestation and 2, 5, 10, 15, 20, 30, 50, and 80 days after birth (n = 110). Posterior frontal and coronal (patent, control) sutures were analyzed for IGF-I and IGF-II mRNA expression by in situ hybridization by using 35S-labeled IGF-I and IGF-II antisense riboprobes. Levels of IGF-I and IGF-II mRNA were quantified by counting the number of autoradiograph signals per cell. IGF-I and osteocalcin immunoreactivity were identified by avidin-biotin peroxidase immunohistochemistry. IGF-I and IGF-II mRNA were expressed in dural cells beneath fusing sutures, and the relative mRNA abundance increased between 2 and 10 days before initiation of fusion. Subsequently, IGF-I and IGF-II mRNA were detected in the suture connective tissue cells at 15 and 20 days during the time of active fusion. In contrast, within large osteoblasts of the osteogenic front, the expression of IGF-I and IGF-II mRNA was minimal. However, IGF-I peptide and osteocalcin protein were intensely immunoreactive within these osteoblasts at 15 days (during the period of suture fusion). These data suggest that the dura-suture interaction may be signaled in a paracrine fashion by dura-derived growth factors, such as IGF-I and IGF-II. These peptides, in turn, stimulate nearby osteoblasts to produce bone-promoting growth factors, such as osteocalcin.  相似文献   

14.
Insulin-like growth factor (IGF)-I and IGF-II play major roles in the regulation of skeletal muscle growth and differentiation, and both are locally expressed in muscle cells. Recent studies have demonstrated that IGF-II up-regulates its own gene expression during myogenesis and this auto-regulatory loop is critical for muscle differentiation. How local IGF-I is regulated in this process is unclear. Here, we report that while IGF-II up-regulated its own gene expression, it suppressed IGF-I gene expression during myogenesis. These opposite effects of IGF-II on IGF-I and IGF-II genes expression were time dependent and dose dependent. It has been shown that IGFs activate the PI3K-Akt-mTOR, p38 MAPK, and Erk1/2 MAPK pathways. In myoblasts, we examined their role(s) in mediating the opposite effects of IGF-II. Our results showed that both the PI3K-Akt-mTOR and p38 MAPK pathways played critical roles in increasing IGF-II mRNA expression. In contrast, mTOR was required for down-regulating the IGF-I gene expression by IGF-II. In addition, Akt, Erk1/2 MAPK, and p38 MAPK pathways were also involved in the regulation of basal levels of IGF-I and IGF-II genes during myogenesis. These findings reveal a previously unrecognized negative feedback mechanism and extend our knowledge of IGF-I and IGF-II gene expression and regulation during myogenesis.  相似文献   

15.
In order to study the relationship between insulin like growth factor-II (IGF-II) and interleukin-8 (IL-8) that are upregulated in psoriasis, we monitored IL-8 expression in IGF-II-treated human keratinocytes and explored the signaling pathways of IL-8 expression by IGF-II. IGF-II increased the IL-8 mRNA and protein levels in human keratinocytes. The upregulation of IL-8 expression by IGF-II was reduced by pretreatment with inhibitors of tyrosine kinase, Src, PI3-kinase, and ERK, but not by p38. Furthermore, IGF-II remarkably increased the DNA binding activities of NF-kappaB and AP-1, and the IL-8 promoter activity. However, cotransfection with IkappaB mutant blocked the IGF-II-induced IL-8 promoter activity. In addition, cotransfection with dominant negative MEK1 mutant, but not with dominant negative p38 mutant, blocked the IGF-II-induced IL-8 promoter activity. These results suggest that IGF-II is involved in the pathogenesis of psoriasis by inducing IL-8 gene expression through the tyrosine kinase-Src-ERK1/2-AP-1 pathway, and the PI3-kinase and NF-kappaB pathway.  相似文献   

16.
Differentiation of muscle cells to form postmitotic myotubes is usually viewed as being negatively controlled by medium components, sometimes designated "mitogens." However, we have found that a family of mitogenic agents, the insulin-like growth factors (IGFs), are potent stimulators of differentiation in myoblasts which act by inducing expression of the myogenin gene. We show here that this action of the IGFs occurs even when these growth factors are not added to the cell medium; upon transfer to low-serum "differentiation medium," myoblasts begin active expression of the IGF-II gene, at both the mRNA and protein levels. Furthermore, autocrine secretion of IGF-II is essential for the process of terminal differentiation of the cells. These conclusions are based upon four lines of evidence. (1) The rate of spontaneous differentiation in several sublines of myogenic cells correlates with their level of expression of IGF-II. (2) C2 and Sol 8 cells, which secrete high levels of IGF-II, are relatively insensitive to exogenous IGFs, in contrast to L6 lines, which exhibit lower levels of IGF-II gene expression. (3) An antisense oligodeoxyribonucleotide complementary to the first five codons of IGF-II inhibits myogenic differentiation in the absence but not in the presence of exogenous IGF-II. (4) Spontaneous differentiation in response to autocrine IGF-II involves the same mechanism that occurs in cells stimulated by the IGFs, i.e. elevation of expression of the myogenin gene.  相似文献   

17.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

18.
19.
该文旨在探讨过表达肿瘤坏死因子受体相关因子6(tumor necrosis factor receptorassociated factor 6,TRAF6)对人急性髓系白血病(acute myeloid leukemia,AML)细胞自噬活性的影响。利用基因表达数据库GEO分析TRAF6在AML患者白血病细胞中的mRNA表达水平。通过癌症基因组图谱TCGA分析TRAF6表达与AML患者临床预后的关系。将TRAF6重组质粒载体转染人AML细胞系(KG-1a和THP-1),采用自噬激活剂雷帕霉素(Rapamycin)和自噬相关抑制剂3-甲基腺嘌呤(3-methyladenine,3-MA)、巴弗洛霉素A1(bafilomycin A1,Baf-A1)分别处理AML细胞。荧光定量PCR、蛋白免疫印迹技术检测过表达TRAF6后白血病细胞自噬标志物(LC3和p62)mRNA和蛋白水平;免疫荧光方法检测LC3绿色荧光斑点结构(puncta);流式细胞术检测细胞凋亡率;CCK-8实验检测AML细胞的体外增殖能力。结果显示,AML患者白血病细胞高表达TRAF6(P<0.01);TRAF6高表达的白血病患者总体生存率和无事件生存率均较TRAF6低表达组显著降低(P=0.01)。TRAF6重组质粒转染能够显著增加两株AML细胞系中TRAF6的mRNA和蛋白水平(P<0.05)。Rapamycin处理能够激活AML细胞系自噬水平,过表达TRAF6后AML细胞LC3 mRNA和LC3II蛋白水平表达上调(P<0.05)、p62 mRNA和蛋白水平下调(P<0.05)以及LC3 puncta聚集增多。用Baf-A1处理以阻断过表达TRAF6的白血病细胞系中的自噬流后,LC3II蛋白表达水平显著提高(P<0.05)。3-MA处理过表达TRAF6的白血病细胞后,LC3II蛋白表达减少、p62蛋白表达增加(P<0.05)。此外,过表达TRAF6降低白血病细胞凋亡率和促进细胞的体外增殖(P<0.001),而过表达TRAF6后联合3-MA处理则可逆转TRAF6对白血病细胞的抗凋亡和促增殖作用(P<0.001)。以上研究结果提示,过表达TRAF6能够增强AML细胞的自噬活性,促进AML细胞的生长。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号