共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the glycosomal enzyme pyruvate phosphate dikinase from the African protozoan parasite Trypanosoma brucei has been solved to 3.0 A resolution by molecular replacement. The search model was the 2.3 A resolution structure of the Clostridium symbiosum enzyme. Due to different relative orientations of the domains and sub-domains in the two structures, molecular replacement could be achieved only by positioning these elements (four bodies altogether) sequentially in the asymmetric unit of the P2(1)2(1)2 crystal, which contains one pyruvate phosphate dikinase (PPDK) subunit. The refined model, comprising 898 residues and 188 solvent molecules per subunit, has a crystallographic residual index Rf = 0.245 (cross-validation residual index Rfree = 0.291) and displays satisfactory stereochemistry. Eight regions, comprising a total of 69 amino acid residues at the surface of the molecule, are disordered in this crystal form. The PPDK subunits are arranged around the crystallographic 2-fold axis as a dimer, analogous to that observed in the C. symbiosum enzyme. Comparison of the two structures was carried out by superposition of the models. Although the fold of each domain or sub-domain is similar, the relative orientations of these constitutive elements are different in the two structures. The trypanosome enzyme is more "bent" than the bacterial enzyme, with bending increasing from the center of the molecule (close to the molecular 2-fold axis) towards the periphery where the N-terminal domain is located. As a consequence of this increased bending and of the differences in relative positions of subdomains, the nucleotide-binding cleft in the amino-terminal domain is wider in T. brucei PPDK: the N-terminal fragment of the amino-terminal domain is distant from the catalytic, phospho-transfer competent histidine 482 (ca 10 A away). Our observations suggest that the requirements of domain motion during enzyme catalysis might include widening of the nucleotide-binding cleft to allow access and departure of the AMP or ATP ligand. 相似文献
2.
3.
Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate,phosphate dikinase (Ep) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme [Michaels, G., Milner, Y., & Reed, G.H. (1975) Biochemistry 14, 3213-3219]. Superhyperfine coupling between the unpaired electrons of Mn(II) and ligands specifically labeled with 17O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the Ep-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction. 相似文献
4.
5.
Isolation of pyrophosphohistidine from pyrophosphorylated pyruvate, phosphate dikinase 总被引:1,自引:0,他引:1
The pyrophosphoryl form of pyruvate, phosphate dikinase was prepared by incubation with adenosine 5'-[gamma-32P]triphosphate and isolated by gel chromatography. Previously a phosphorylated moiety had been isolated from the enzyme and was shown to be bound through a phosphoramidate linkage to the 3' nitrogen of a histidine residue [Spronk, A. M., Yoshida, H., & Wood, H. G. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 4415]. This histidine residue has been considered to be the pyrophosphoryl and phosphoryl carrier between the three subsites of this enzyme. Previous attempts to isolate the putative [32P]pyrophosphohistidine have been unsuccessful due to the lability of the [32P]pyrophosphoryl-enzyme. By stabilization of the [32P]pyrophosphoryl-enzyme with diazomethane, it has been possible to isolate a [32P]-pyrophosphohistidine from the hydrolysates. To our knowledge this work constitutes the first direct demonstration of a pyrophosphorylated histidyl residue in an enzyme. 相似文献
6.
Pyruvate phosphate dikinase: sequence of the histidyl peptide, the pyrophosphoryl and phosphoryl carrier 总被引:4,自引:0,他引:4
Pyruvate phosphate dikinase contains a pivotal histidyl residue which functions to mediate the transfer of phosphoryl moieties during the reaction catalyzed by the enzyme. The tryptic peptide which contains this essential histidyl residue has been isolated by a two-step procedure originally developed by Wang and co-workers [Wang, T., Jurasek, L., & Bridger, W. A. (1972) Biochemistry 11, 2067]. This peptide has been sequenced by the manual dansyl-Edman procedure and is shown to be NH2-Gly-Gly-Met-Thr-Ser-His-Ala-Ala-Val-Val-Ala-Arg-CO2H. There is no readily interpretable homology between this peptide and other phosphorylated histidyl peptides previously isolated from other enzymes. By use of Chou & Fasman [Chou, P. Y., & Fasman, G. D. (1974) Biochemistry 13, 222], it is predicted that the sequence contains an alpha helix from the methionine residue through to the carboxyl terminal arginine residue. 相似文献
7.
N F Phillips 《Biochemistry》1988,27(9):3314-3320
Pyruvate,phosphate dikinase from Propionibacterium shermanii is strongly inhibited by fluorescein 5'-isothiocyanate (FITC). The time course of inactivation is biphasic, but the dependence of the pseudo-first-order rate constants on the inhibitor concentration indicates the formation of a reversible complex with the enzyme prior to covalent modification. The substrate/product nucleotide pairs MgATP and MgAMP protected against inactivation, while in the absence of Mg2+, both the nucleotides were ineffective. Previously, an essential lysine at the ATP/AMP subsite of the enzyme from Bacteroides symbiosus had been implicated by use of the 2',3'-dialdehyde of AMP (oAMP) [Evans, C. T., Goss, N. H., & Wood, H. G. (1980) Biochemistry 19, 5809]. The inhibition by FITC was competitive with MgAMP, and a multiple inhibition analysis plot indicated that binding of oAMP and FITC was mutually exclusive. These observations suggest that FITC and oAMP bind at the nucleotide binding site and probably to the same reactive lysine that is modified by oAMP. With peptide mapping by high-performance liquid chromatography, FITC was found to be a suitable probe for isolating the peptide from the ATP/AMP subsite. 相似文献
8.
Ye D Wei M McGuire M Huang K Kapadia G Herzberg O Martin BM Dunaway-Mariano D 《The Journal of biological chemistry》2001,276(40):37630-37639
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site. 相似文献
9.
10.
P J Hudson D B Keech J C Wallace 《Biochemical and biophysical research communications》1975,65(1):213-219
The active-site-directed reagent, bromopyruvate has been used to covalently label the pyruvate binding site of pyruvate carboxylase (E.C.6.4.1.1.) isolated from sheep liver. Oxalo-acetate proved to be the most effective reaction component in protecting the enzyme against inactivation; pyruvate was less effective although its efficiency was enhanced by the presence of acetyl CoA. The other reaction components, MgATP2? and HCO3? failed to protect the enzyme against inactivation. Using bromo[214C]pyruvate, it was shown that at 100% inactivation, 1.5 pyruvyl residues were bound per mole of biotin and when the reaction was carried out in the presence of acetyl CoA, this ratio was reduced to 1.0. Analysis of pronase digests of the enzyme revealed that more than 90% of the radioactivity was present as carboxy-hydroxyethyl cysteine. 相似文献
11.
Pyruvate phosphate dikinase (PPDK) catalyzes the reversible reaction: ATP + P(i) + pyruvate <--> AMP + PP(i) + PEP using Mg2+ and NH4+ ions as cofactors. The reaction takes place in three steps, each mediated by a carrier histidine residue located on the surface of the central domain of this three-domain enzyme: (1) E-His + ATP <--> E-His-PP.AMP, (2) E-His-PP.AMP + P(i) <--> E-His-P + AMP + PP(i), (3) E-His-P + pyruvate <--> E-His + PEP. The first two partial reactions are catalyzed at an active site located on the N-terminal domain, and the third partial reaction is catalyzed at an active site located on the C-terminal domain. For catalytic turnover, the central domain travels from one terminal domain to the other. The goal of this work is to determine whether the two connecting linkers direct the movement of the central domain between active sites during catalytic turnover. The X-ray crystal structure of the enzyme suggests interaction between the two linkers that may result in their coordinated movement. Mutations were made at the linkers for the purpose of disrupting the linker-linker interaction and, hence, synchronized linker movement. Five linker mutants were analyzed. Two of these contain 4-Ala insertions within the solvated region of the linker, and three have 3-residue deletions in this region. The efficiencies of the mutants for catalysis of the complete reaction as well as the E-His + ATP <--> E-His-PP.AMP partial reaction at the N-terminal domain and the E-His + PEP <--> E-His-P + pyruvate reaction at the C-terminal domain were measured to assess linker function. Three linker mutants are highly active catalysts at both active sites, and the fourth is highly active at one site but not the other. These results are interpreted as evidence against coordinated linker movement, and suggest instead that the linkers move independently as the central domain travels between active sites. It is hypothesized that while the linkers play a passive role in central domain-terminal domain docking, their structural design minimizes the conformational space searched in the diffusion process. 相似文献
12.
Properties and mechanism of action of pyruvate, phosphate dikinase from leaves 总被引:8,自引:1,他引:8
下载免费PDF全文

1. Sugar-cane leaf pyruvate,P(i) dikinase was prepared free of enzymes that would interfere with studies on the stoicheiometry and mechanism of the reaction it catalyses. The reaction was unequivocally shown to involve the conversion of equimolar amounts of pyruvate, ATP and P(i) into phosphoenolpyruvate, AMP and PP(i). 2. The purified enzyme was stable at pH8.3 only if stored at about 20 degrees in the presence of Mg(2+) and a thiol-reducing reagent, care being taken to prevent the oxidation of the thiol. 3. The apparent Michaelis constants for phosphoenolpyruvate and PP(i) were 0.11mm and 0.04mm respectively and that for AMP was less than 4mum. 4. At pH8.3 the initial velocity of the reaction was about 6 times as fast in the direction towards phosphoenolpyruvate synthesis as in the reverse direction. 5. With the exception of ATP, all the products of the reaction in both directions were inhibitory. 6. The phosphate groups of PP(i) were derived from P(i) and from the terminal phosphate of ATP. 7. Isotope-exchange studies indicated that the reaction proceeds in the following steps:Enzyme+ATP+P(i) right harpoon over left harpoon Enzyme-P+AMP+PP(i)Enzyme-P+pyruvate right harpoon over left harpoon Enzyme+phosphoenolpyruvate 相似文献
13.
Pyruvate phosphate dikinase (PPDK) is a multidomain protein that catalyzes the interconversion of ATP, pyruvate, and phosphate with AMP, phosphoenolpyruvate (PEP), and pyrophosphate using its central domain to transport phosphoryl groups between two distant active sites. In this study, the mechanism by which the central domain moves between the two catalytic sites located on the N-terminal and C-terminal domains was probed by expressing this domain as an independent protein and measuring its structure, stability, and ability to catalyze the ATP/phosphate partial reaction in conjunction with the engineered N-terminal domain protein (residues 1-340 of the native PPDK). The encoding gene was engineered to express the central domain as residues 381-512 of the native PPDK. The central domain was purified and shown to be soluble, monomeric (13,438 Da), and stable (deltaG = 4.3 kcal/mol for unfolding in buffer at pH 7.0, 25 degrees C) and to possess native structure, as determined by multidimensional heteronuclear NMR analysis. The main chain structure of the central domain in solution aligns closely with that of the X-ray structure of native PPDK (the root-mean-square deviation is 2.2 A). Single turnover reactions of [14C]ATP and phosphate, carried out in the presence of equal concentrations of central domain and the N-terminal domain protein, did not produce the expected products, in contrast to efficient product formation observed for the N-terminal central domain construct (residues 1-553 of the native PPDK). These results are interpreted as evidence that the central domain, although solvent-compatible, must be tethered by the flexible linkers to the N-terminal domain for the productive domain-domain docking required for efficient catalysis. 相似文献
14.
《Parasitology international》2014,63(1):80-86
In kinetoplastids such as Trypanosoma cruzi, glycolysis is compartmentalized in peroxisome-like organelles called glycosomes. Pyruvate phosphate dikinase (PPDK), an auxiliary enzyme of glycolysis, is also located in the glycosomes. We have detected that this protein is post-translationally modified by phosphorylation and proteolytic cleavage. On western blots of T. cruzi epimastigotes, two PPDK forms were found with apparent MW of 100 kDa and 75 kDa, the latter one being phosphorylated at Thr481, a residue present in a highly conserved region. In subcellular localization assays the 75 kDa PPDK was located peripherally at the glycosomal membrane. Both PPDK forms were found in all life-cycle stages of the parasite. When probing for both PPDK forms during a growth of epimastigotes in batch culture, an increase in the level of the 75 kDa form and a decrease of the 100 kDa one were observed by western blot analysis, signifying that glucose starvation and the concomitant switch of the metabolism to amino acid catabolism may play a role in the post-translational processing of the PPDK. Either one or both of the processes, phosphorylation and proteolytic cleavage of PPDK, result in inactivation of the enzyme. It remains to be established whether the phenomenon exerts a regulatory function. 相似文献
15.
Pyruvate orthophosphate dikinase is synthesized in non-green leaf cells of the maize mutant iojap. Since iojap plastids lack ribosomes, it is concluded that the site of synthesis of pyruvate orthophosphate dikinase in maize leaf cells is on ribosomes in the cytoplasm. 相似文献
16.
Purification, molecular, and catalytic properties of pyruvate phosphate dikinase from the maize leaf 总被引:23,自引:0,他引:23
T Sugiyama 《Biochemistry》1973,12(15):2862-2868
17.
Acosta H Dubourdieu M Quiñones W Cáceres A Bringaud F Concepción JL 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,138(4):347-356
Pyruvate phosphate dikinase (PPDK) was recently reported in trypanosomatids, but its metabolic function is not yet known. The present work deals with the cellular localization and the function of the Trypanosoma cruzi enzyme. First, we show by digitonin titration and cell fractionation that the enzyme was essentially present in the glycosome matrix of the epimastigote form. Second, we address the issue of the direction of the reaction inside the glycosome for one part, our bibliographic survey evidenced a quite exergonic ΔG°′ (at least −5.2 kcal/mol at neutral pH and physiologic ionic strength); for another part, no pyrophosphatase (PPase) could be detected in fractions corresponding to the glycosomes; therefore, glycosomal PPDK likely works in the direction of pyruvate production. Third, we address the issue of the origin of the glycosomal pyrophosphate (PPi): several synthetic pathways known to produce PPi are already considered to be glycosomal. This work also indicates the presence of an NADP+-dependent β-oxidation of palmitoyl-CoA in the glycosome. Several pyruvate-consuming activities, in particular alanine dehydrogenase (ADH) and pyruvate carboxylase (PC), were detected in the glycosomal fraction. PPDK appears therefore as a central enzyme in the metabolism of the glycosome of T. cruzi by providing a link between glycolysis, fatty acid oxidation and biosynthetic PPi-producing pathways. Indeed, PPDK seems to replace pyrophosphatase in its classical thermodynamic role of displacing the equilibrium of PPi-producing reactions, as well as in its role of eliminating the toxic PPi. 相似文献
18.
19.
Action spectrum for light activation of pyruvate, phosphate dikinase in maize leaves 总被引:1,自引:0,他引:1
Light activation of pyruvate, phosphate dikinase was investigatedusing leaf discs of dark pretreated maize (Zea mays L. var.Golden Gross Bantam) leaves. The action spectrum resembled theabsorption spectrum of the leaf, having two peaks at 436 and671 nm and a minimum at 503 nm. This similarity suggests involvementof chlorophyll in the light activation as a photoreceptor. Lightactivation was markedly inhibited by 3-(p-chlorophenyl)-1,1-dimethyl urea. We thus inferred that activation of the enzymewas closely correlated to the photosynthetic electron transportsystem. (Received July 3, 1974; ) 相似文献