首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an RNA-binding protein that performs multiple functions required for the expression of HSV-1 genes during a productive infection. One essential function involves shuttling between the nucleus and the cytoplasm. Some of the domains identified in ICP27 include a leucine-rich nuclear export sequence (NES), a nuclear localization signal, three KH-like RNA-binding domains, and an RGG-box type RNA-binding motif. To study the contribution of two of the essential domains in ICP27 to HSV gene expression, we generated recombinant herpesviruses carrying deleterious mutations in the NES and KH domains of ICP27. To accomplish this, we fused the green fluorescent protein (GFP) to ICP27 and utilized fluorescence as a marker to isolate recombinant herpesviruses. Fusion of GFP to wild-type ICP27 did not disturb its localization or function or significantly reduce virus yield. Analysis of HSV gene expression in cells infected with a recombinant virus carrying a point mutation in the first KH-like RNA-binding domain revealed that nuclear export of ICP27 was not blocked, and the expression of only a subset of ICP27-dependent late genes was affected. These findings suggest that individual KH-like RNA-binding motifs in ICP27 may be involved in binding distinct RNAs. Analysis of recombinant viruses carrying a lethal mutation in the NES of ICP27 was not accomplished because this mutation results in a strong dominant-negative phenotype. Finally, we demonstrate that shuttling by ICP27 is regulated by an export control sequence adjacent to its NES that functions like the inhibitory sequence element found adjacent to the NES of NS1 from influenza virus.  相似文献   

2.
The NS1 proteins of influenza A and B viruses (A/NS1 and B/NS1 proteins) have only approximately 20% amino acid sequence identity. Nevertheless, these proteins show several functional similarities, such as their ability to bind to the same RNA targets and to inhibit the activation of protein kinase R in vitro. A critical function of the A/NS1 protein is the inhibition of synthesis of alpha/beta interferon (IFN-alpha/beta) during viral infection. Recently, it was also found that the B/NS1 protein inhibits IFN-alpha/beta synthesis in virus-infected cells. We have now found that the expression of the B/NS1 protein complements the growth of an influenza A virus with A/NS1 deleted. Expression of the full-length B/NS1 protein (281 amino acids), as well as either its N-terminal RNA-binding domain (amino acids 1 to 93) or C-terminal domain (amino acids 94 to 281), in the absence of any other influenza B virus proteins resulted in the inhibition of IRF-3 nuclear translocation and IFN-beta promoter activation. A mutational analysis of the truncated B/NS1(1-93) protein showed that RNA-binding activity correlated with IFN-beta promoter inhibition. In addition, a recombinant influenza B virus with NS1 deleted induces higher levels of IRF-3 activation, as determined by its nuclear translocation, and of IFN-alpha/beta synthesis than wild-type influenza B virus. Our results support the hypothesis that the NS1 protein of influenza B virus plays an important role in antagonizing the IRF-3- and IFN-induced antiviral host responses to virus infection.  相似文献   

3.
Hepatitis C virus (HCV) nonstructural protein 4B (NS4B) is an integral membrane protein, which plays an important role in the organization and function of the HCV replication complex (RC). Although much is understood about its amphipathic N-terminal and C-terminal domains, we know very little about the role of the transmembrane domains (TMDs) in NS4B function. We hypothesized that in addition to anchoring NS4B into host membranes, the TMDs are engaged in intra- and intermolecular interactions required for NS4B structure/function. To test this hypothesis, we have engineered a chimeric JFH1 genome containing the Con1 NS4B TMD region. The resulting virus titers were greatly reduced from those of JFH1, and further analysis indicated a defect in genome replication. We have mapped this incompatibility to NS4B TMD1 and TMD2 sequences, and we have defined putative TMD dimerization motifs (GXXXG in TMD2 and TMD3; the S/T cluster in TMD1) as key structural/functional determinants. Mutations in each of the putative motifs led to significant decreases in JFH1 replication. Like most of the NS4B chimeras, mutant proteins had no negative impact on NS4B membrane association. However, some mutations led to disruption of NS4B foci, implying that the TMDs play a role in HCV RC formation. Further examination indicated that the loss of NS4B foci correlates with the destabilization of NS4B protein. Finally, we have identified an adaptive mutation in the NS4B TMD2 sequence that has compensatory effects on JFH1 chimera replication. Taken together, these data underscore the functional importance of NS4B TMDs in the HCV life cycle.  相似文献   

4.
The influenza virus NS1 protein is the only known example of a protein that inhibits the nuclear export of mRNA. To identify the functional domains of this protein, we introduced 18 2- or 3-amino-acid substitutions at approximately equally spaced locations along the entire length of the protein. Two functional domains were identified. The domain near the amino end (amino acids 19 through 38) was shown to be the RNA-binding domain, by using a gel shift assay with purified NS1 protein and spliced viral NS2 mRNA as the RNA target. The second domain, which is in the carboxy half of the molecule, was presumed to be the effector domain that interacts with host nuclear proteins to carry out the nuclear RNA export function, by analogy with the effector domain of the Rev proteins of human immunodeficiency virus (HIV) and other lentiviruses which facilitate rather than inhibit nuclear RNA export. The NS1 protein has a 10-amino-acid sequence that is similar to the consensus sequence in the effector domains of lentivirus Rev proteins, specifically including two crucial leucines at positions 7 and 9 of this sequence. However, the effector domains of the NS1 and Rev (HIV type 1 [HIV-1]) proteins differed in several significant ways including the following: (i) unlike the HIV-1 Rev protein, NS1 effector domain mutants were negative recessive rather than negative dominant, (ii) the NS1 effector domain is about three times larger than the effector domain of the HIV-1 Rev protein, and (iii) unlike the HIV-1 protein, NS1 effector domain mutants exhibited a surprising property, a changed intracellular/intranuclear distribution, compared with the wild-type protein. These differences strongly suggest that the effector domains of the NS1 and Rev proteins interact with different nuclear protein targets, which likely explains the opposite effects of these two proteins on nuclear mRNA export.  相似文献   

5.
The IKK/NF‐κB pathway is an essential signalling process initiated by the cell as a defence against viral infection like influenza virus. This pathway is therefore a prime target for viruses attempting to counteract the host response to infection. Here, we report that the influenza A virus NS1 protein specifically inhibits IKK‐mediated NF‐κB activation and production of the NF‐κB induced antiviral genes by physically interacting with IKK through the C‐terminal effector domain. The interaction between NS1 and IKKα/IKKβ affects their phosphorylation function in both the cytoplasm and nucleus. In the cytoplasm, NS1 not only blocks IKKβ‐mediated phosphorylation and degradation of IκBα in the classical pathway but also suppresses IKKα‐mediated processing of p100 to p52 in the alternative pathway, which leads to the inhibition of nuclear translocation of NF‐κB and the subsequent expression of downstream NF‐κB target genes. In the nucleus, NS1 impairs IKK‐mediated phosphorylation of histone H3 Ser 10 that is critical to induce rapid expression of NF‐κB target genes. These results reveal a new mechanism by which influenza A virus NS1 protein counteracts host NF‐κB‐mediated antiviral response through the disruption of IKK function. In this way, NS1 diminishes antiviral responses to infection and, in turn, enhances viral pathogenesis.  相似文献   

6.
7.
We have identified a nuclear structure that is induced after infection with the autonomous parvovirus H-1. Using fluorescence microscopy, we observed that the major nonstructural protein (NS1) of H-1 virus which is essential for viral DNA amplification colocalized with virus-specific DNA sequences and sites of ongoing viral DNA replication in distinct nuclear bodies which we designated H-1 parvovirus-associated replication bodies (H-1 PAR-bodies). In addition, two cellular proteins were shown to accumulate in H1 PAR-bodies: (i) the proliferating cell nuclear antigen (PCNA) which is essential for chromosomal and parvoviral replication and (ii) the NS1-interacting small glutamine-rich TPR-containing protein (SGT), suggesting a role for the latter in parvoviral replication and/or gene expression. Since many DNA viruses target preexisting nuclear structures, known as PML-bodies, for viral replication and gene expression, we have determined the localization of H-1 PAR- and PML-bodies by double-fluorescence labeling and confocal microscopy and found them to be spatially unrelated. Furthermore, H-1 PAR-bodies did not colocalize with other prominent nuclear structures such as nucleoli, coiled bodies, and speckled domains. Electron microscopy analysis revealed that NS1, as detected by indirect immunogold labeling, was localized in ring-shaped electron-dense nuclear structures corresponding in size and frequency to H-1 PAR-bodies. These structures were also clearly visible without immunogold labeling and could be detected only in infected cells. Our results suggest that H-1 virus does not target known nuclear bodies for DNA replication but rather induces the formation of a novel structure in the nucleus of infected cells.  相似文献   

8.
Nucleocytoplasmic transport of viral ribonucleoproteins (vRNPs) is an essential aspect of the replication cycle for influenza A, B, and C viruses. These viruses replicate and transcribe their genomes in the nuclei of infected cells. During the late stages of infection, vRNPs must be exported from the nucleus to the cytoplasm prior to transport to viral assembly sites on the cellular plasma membrane. Previously, we demonstrated that the influenza A virus nuclear export protein (NEP, formerly referred to as the NS2 protein) mediates the export of vRNPs. In this report, we suggest that for influenza B and C viruses the nuclear export function is also performed by the orthologous NEP proteins (formerly referred to as the NS2 protein). The influenza virus B and C NEP proteins interact in the yeast two-hybrid assay with a subset of nucleoporins and with the Crm1 nuclear export factor and can functionally replace the effector domain from the human immunodeficiency virus type 1 Rev protein. We established a plasmid transfection system for the generation of virus-like particles (VLPs) in which a functional viral RNA-like chloramphenicol acetyltransferase (CAT) gene is delivered to a new cell. VLPs generated in the absence of the influenza B virus NEP protein were unable to transfer the viral RNA-like CAT gene to a new cell. From these data, we suggest that the nuclear export of the influenza B and C vRNPs are mediated through interaction between NEP proteins and the cellular nucleocytoplasmic export machinery.  相似文献   

9.
Flaviviruses are insect-borne, positive-strand RNA viruses that have been disseminated worldwide. Their genome is translated into a polyprotein, which is subsequently cleaved by a combination of viral and host proteases to produce three structural proteins and seven nonstructural proteins. The nonstructural protein NS4B of dengue 2 virus partially blocks activation of STAT1 and interferon-stimulated response element (ISRE) promoters in cells stimulated with interferon (IFN). We have found that this function of NS4B is conserved in West Nile and yellow fever viruses. Deletion analysis shows that that the first 125 amino acids of dengue virus NS4B are sufficient for inhibition of alpha/beta IFN (IFN-alpha/beta) signaling. The cleavable signal peptide at the N terminus of NS4B, a peptide with a molecular weight of 2,000, is required for IFN antagonism but can be replaced by an unrelated signal peptide. Coexpression of dengue virus NS4A and NS4B together results in enhanced inhibition of ISRE promoter activation in response to IFN-alpha/beta. In contrast, expression of the precursor NS4A/B fusion protein does not cause an inhibition of IFN signaling unless this product is cleaved by the viral peptidase NS2B/NS3, indicating that proper viral polyprotein processing is required for anti-interferon function.  相似文献   

10.
The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.  相似文献   

11.
Influenza A virus nonstructural protein 1 (NS1A protein) is a virulence factor which is targeted into the nucleus. It is a multifunctional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. We show that the NS1A protein can interact with all six human importin alpha isoforms, indicating that the nuclear translocation of NS1A protein is mediated by the classical importin alpha/beta pathway. The NS1A protein of the H1N1 (WSN/33) virus has only one N-terminal arginine- or lysine-rich nuclear localization signal (NLS1), whereas the NS1A protein of the H3N2 subtype (Udorn/72) virus also has a second C-terminal NLS (NLS2). NLS1 is mapped to residues 35 to 41, which also function in the double-stranded RNA-binding activity of the NS1A protein. NLS2 was created by a 7-amino-acid C-terminal extension (residues 231 to 237) that became prevalent among human influenza A virus types isolated between the years 1950 to 1987. NLS2 includes basic amino acids at positions 219, 220, 224, 229, 231, and 232. Surprisingly, NLS2 also forms a functional nucleolar localization signal NoLS, a function that was retained in H3N2 type virus NS1A proteins even without the C-terminal extension. It is likely that the evolutionarily well-conserved nucleolar targeting function of NS1A protein plays a role in the pathogenesis of influenza A virus.  相似文献   

12.
Liang Y  Ye H  Kang CB  Yoon HS 《Biochemistry》2007,46(41):11550-11558
Nonstructural protein 5A protein (NS5A) of hepatitis C virus (HCV) plays an important role in the regulation of viral replication, interferon resistance, and apoptosis. HCV NS5A comprises three domains. Recently the structure of domain 1 has been determined, revealing a structural scaffold with a novel zinc-binding motif and a disulfide bond. At present, the structures of domains 2 and 3 remain undefined. Domain 2 of HCV NS5A (NS5A-D2) is important for functions of NS5A and involved in molecular interactions with its own NS5B and PKR, a cellular interferon-inducible serine/threonine specific protein kinase. In this study we performed structural analysis of domain 2 by multinuclear nuclear magnetic resonance (NMR) spectroscopy. The analysis of the backbone 1H, 13C, and 15N resonances, 3JHNalpha coupling constants ,and 3D NOE data indicates that NS5A-D2 lacks secondary structural elements and reveals characteristics of unfolded proteins. NMR relaxation parameters confirmed the lack of rigid structure in the domain. The absence of an ordered conformation and the observation of a highly dynamic behavior of NS5A-D2 may provide an underlying molecular basis on its physiological function to allow NS5A-D2 to interact with a variety of biological partners.  相似文献   

13.
14.
15.
目的:原核表达、纯化登革2型病毒非结构蛋白NS4B,并制备其多克隆抗体,以研究其结构与功能。方法:扩增编码登革2型病毒NS4B的24-238位氨基酸残基的基因序列,并将其克隆到原核表达载体pGEX-4T-1,转化大肠杆菌BL21(DE3),IPTG诱导表达;采用蛋白浸提方法从SDS-PAGE胶中回收融合蛋白;用纯化后的融合蛋白免疫BALB/c鼠制备多克隆抗体,采用间接免疫荧光法检测抗体效价。结果:原核表达了NS4B-GST融合蛋白,并获得了其多克隆抗体,抗体效价为1:800。结论:登革2型病毒NS4B的24-238位氨基酸残基可诱导小鼠产生具有较高效价和特异性的多克隆抗体,这为研究NS4B的结构与功能奠定了基础。  相似文献   

16.
目的:对2013年3月发生的感染人的新型H7N9亚型禽流感病毒的非结构蛋白1(NS1)基因序列进行同源性分析,构建NS1重组质粒并表达。方法:从GenBank获得2006~2013年不同来源的H7N9亚型病毒NS1序列,并进行同源性比较;利用PCR方法从H7N9亚型禽流感病毒株A/Shanghai/4664T/2013(H7N9)基因组cDNA中扩增得到全长NS1基因,并将该片段定向克隆到原核表达载体pET28a上,构建重组质粒pET28a-NS1,经酶切鉴定,将重组质粒转化大肠杆菌BL21(DE3)感受态细胞后,IPTG诱导表达,且进行Western印迹分析。结果:经序列分析,2013年暴发的H7N9型禽流感病毒的NS1基因核苷酸序列同源性为95%~100%,与之前暴发的H7N9型流感病毒NS1基因序列的同源性为86.4%~90.7%,表明2次暴发的该型流感分离株属于不同的进化分支;PCR扩增得到约680 bp的NS1基因序列,所克隆的NS1基因在原核细胞中的表达产物主要以包涵体形式存在,SDS-PAGE检测结果表明重组蛋白相对分子质量为25×103,Western印迹分析证实表达产物为H7N9禽流感病毒NS1蛋白。结论:为进一步研究H7N9亚型流感病毒NS1蛋白功能及基于NS1蛋白的抗病毒药物奠定了基础。  相似文献   

17.
The NS2 (NEP) protein of influenza A virus contains a highly conserved nuclear export signal (NES) motif in its amino-terminal region (12ILMRMSKMQL21, A/WSN/33), which is thought to be required for nuclear export of viral ribonucleoprotein complexes (vRNPs) mediated by a cellular export factor, CRM1. However, simultaneous replacement of three hydrophobic residues in the NES with alanine does not affect NS2 (NEP) binding to CRM1, although the virus with these mutations is not viable. To determine the extent of sequence conservation required by the NS2 (NEP) NES for its export function during viral replication, we randomly introduced mutations by degenerative mutagenesis into the region of NS cDNA encoding the NS2 (NEP) NES and then attempted to generate mutant viruses containing these alterations by reverse genetics. Sequence analysis of the recovered viruses showed that although some of the mutants possessed amino acids other than those conserved in the NES, hydrophobicity within this motif was maintained. Nuclear export of vRNPs representing all of the mutant viruses was completely inhibited in the presence of a CRM1 inhibitor, leptomycin B, as was the transport of wild-type virus, indicating that the CRM1-mediated pathway is responsible for the nuclear export of both wild-type and mutant vRNPs. The vRNPs of some of the mutant viruses were exported in a delayed manner, resulting in limited viral growth in cell culture and in mice. These results suggest that the NES motif may be an attractive target for the introduction of attenuating mutations in the production of live vaccine viruses.  相似文献   

18.
重组杆状病毒感染昆虫细胞是表达外源蛋白常用的一种方法。为有效鉴定转染的细胞中是否产生了重组病毒粒子,对质粒pFastBacI进行改造,构建了极早期基因ie1启动子控制的绿色荧光蛋白egfp基因表达盒,以及多角体基因启动子控制的外源DNA的一个通用型双表达载体;通过酶切、连接的方式,将家蚕二分浓核病毒ns1基因连接到多角体启动子下游;在转座酶的介导下,该供体质粒上部分序列可转座到穿梭载体Bm-Bacmid上,进而构建可同时表达egfp和ns1基因的重组杆粒。将构建的该重组杆粒DNA转染BmN细胞,通过观察可视化的绿色荧光信号,可迅速判定转染后的细胞中重组病毒粒子产生的情况,收集转染后的细胞培养上清,将其感染BmN细胞,对感染4 d后的细胞总蛋白进行Western blotting分析,结果表明能杂交到一条36 kDa大小的特异蛋白,表明NS1蛋白成功获得了表达,进而为深入研究ns1基因的功能奠定了基础。  相似文献   

19.
20.
Influenza B viruses, which cause a highly contagious respiratory disease every year, are restricted to humans, but the basis for this restriction had not been determined. Here we provide one explanation for this restriction: the species specificity exhibited by the NS1 protein of influenza B virus (NS1B protein). This viral protein combats a major host antiviral response by binding the interferon-α/β-induced, ubiquitin-like ISG15 protein and inhibiting its conjugation to an array of proteins. We demonstrate that the NS1B protein exhibits species-specific binding; it binds human and non-human primate ISG15 but not mouse or canine ISG15. In both transfection assays and virus-infected cells, the NS1B protein binds and relocalizes only human and non-human primate ISG15 from the cytoplasm to nuclear speckles. Human and non-human primate ISG15 proteins consist of two ubiquitin-like domains separated by a short hinge linker of five amino acids. Remarkably, this short hinge plays a large role in the species-specific binding by the NS1B protein. The hinge of human and non-human primate ISG15, which has a sequence that differs from that of other mammalian ISG15 proteins, including mouse and canine ISG15, is absolutely required for binding the NS1B protein. Consequently, the ISG15 proteins of humans and non-human primates are the only mammalian ISG15 proteins that would bind NS1B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号