首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singlet oxygen is generated by several cellular, enzymatic, and chemical reactions as well as by exposure to UV or visible light in the presence of a sensitizer. Consequently, this oxidant has been proposed to be a damaging agent many pathologies. Proteins are major targets for singlet oxygen as a result of their abundance and high rate constants for reaction. In this study, we show that illumination of viable rose bengal-loaded THP-1 (human monocyte-like) cells with visible light gives rise to intracellular protein-derived peroxides. The peroxide yield increases with illumination time, requires the presence of rose bengal, is enhanced in D(2)O, and is decreased by azide, consistent with the mediation of singlet oxygen. The concentration of peroxides detected, which is not affected by glucose or ascorbate loading of the cells, corresponds to about 1.5 nmoles peroxide per 10(6) cells, or 10 nmoles/mg cell protein, and account for up to approximately 15% of the O(2) consumed by the cells. Similar peroxides have been detected on isolated cellular proteins exposed to light in the presence of rose bengal and oxygen. After cessation of illumination, cellular protein peroxide levels decrease with t(1/2) about 4 h at 37 degrees C. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions gives rise to radicals as detected by EPR spin trapping. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer leads to novel long-lived, but reactive, intracellular protein peroxides via singlet oxygen-mediated reactions.  相似文献   

2.
Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results in loss of enzymatic activity. Comparative studies with a range of peroxides have shown that this inhibition is concentration, peroxide, and time dependent, with H2O2 less efficient than some peptide peroxides. Enzyme inhibition correlates with loss of both the peroxide and enzyme thiol residues, with a stoichiometry of two thiols lost per peroxide consumed. Blocking the thiol residues prevents reaction with the peroxide. This stoichiometry, the lack of metal-ion dependence, and the absence of electron paramagnetic resonance (EPR)-detectable species, is consistent with a molecular (nonradical) reaction between the active-site thiol of the enzyme and the peroxide. A number of low-molecular-mass compounds including thiols and ascorbate, but not Trolox C, can prevent inhibition by removing the initial peroxide, or species derived from it. In contrast, glutathione reductase and lactate dehydrogenase are poorly inhibited by these peroxides in the absence of added Fe2+-EDTA. The presence of this metal-ion complex enhanced the inhibition observed with these enzymes consistent with the occurrence of radical-mediated reactions. Overall, these studies demonstrate that singlet oxygen-mediated damage to an initial target protein can result in selective subsequent damage to other proteins, as evidenced by loss of enzymatic activity, via the formation and subsequent reactions of protein peroxides. These reactions may be important in the development of cellular dysfunction as a result of photo-oxidation.  相似文献   

3.
L-ascorbic acid quenches singlet (1 delta g) molecular oxygen in aqueous media (pH 6.8 for [1H]H2O and pD 7.2 for [2H]D2O) as measured directly by monitoring (0,0) 1 delta g leads to 3 sigma-g emission at 1.28 micron. Singlet oxygen was generated at room temperature in the solutions via photosensitization of sodium chrysene sulfonate; this sulfonated polycyclic hydrocarbon was synthesized to provide a water soluble chromophore inert to usual dye-ascorbate photobleaching. A marked isotope effect is found; kHQ2O is 3.3 times faster than kDQ2O, suggesting ascorbic acid is chemically quenching singlet oxygen.  相似文献   

4.
5.
The spectrum of biological processes in which oxygen is used by living systems is quite large, and the products include some damaging species of activated oxygen, particularly the superoxide radical (O-.2) and hydrogen peroxide (H2O2). Superoxide radicals and hydrogen peroxide, in turn, can lead to the formation of other damaging species: hydroxyl radicals (.OH) and singlet oxygen (1O2). Hydroxyl radicals react with organic compounds to give secondary free radicals that, in the presence of oxygen, yield peroxy radicals, peroxides, and hydroperoxides. Formation, interconversion, and reactivity of O-.2 and related activated oxygen species, methods available for their detection, and the basis of their biological toxicity are briefly reviewed.  相似文献   

6.
Hydrogen peroxide potentiates CN(-)-induced apoptosis of guard cells recorded as destruction of cell nuclei in the epidermis from pea leaves. A still stronger effect was exerted by the addition of H2O2 and NADH, which are the substrates of the plant cell wall peroxidase producing O2*- coupled to the oxidation of NADH. The CN(-)-or (CN(-) + H2O2)-induced destruction of guard cell nuclei was completely removed by nitroblue tetrazolium (NBT) oxidizing O2*- and preventing there-by the subsequent generation of H2O2. The reduced NBT was deposited in the cells as formazan crystals. Cyanide-induced apoptosis was diminished by mannitol and ethanol, which are OH* traps. The dyes Rose Bengal (RB) and tetramethylrhodamine ethyl ester (TMRE) photosensitizing singlet oxygen production suppressed the CN(-)-induced destruction of the cell nuclei in the light. This suppression was removed by exogenous NADH, which reacts with 1O2 yielding O2*-. Incubation of leaf slices with RB in the light lowered the photosynthetic O2 evolution rate and induced the permeability of guard cells for propidium iodide, which cannot pass across intact membranes. Inhibition of photosynthetic O2 evolution by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or bromoxynil prevented CN(-)-induced apoptosis of guard cells in the light but not in the dark. RB in combination with exogenous NADH caused H2O2 production that was sensitive to NBT and estimated from dichlorofluorescein (DCF) fluorescence. Data on NBT reduction and DCF and TMRE fluorescence obtained using a confocal microscope and data on the NADH-dependent H2O2 production are indicative of generation of reactive oxygen species in the chloroplasts, mitochondria, and nuclear region of guard cells as well as with participation of apoplastic peroxidase. Cyanide inhibited generation of reactive oxygen species in mitochondria and induced their generation in chloroplasts. The results show that H2O2, OH*, and O2*- resources utilized for H2O2 production are involved in apoptosis of guard cells. It is likely that singlet oxygen generated by RB in the light, judging from the permeability of the plasmatic membrane for propidium iodide, makes Photosystem II of chloroplasts inoperative and induces necrosis of the guard cells.  相似文献   

7.
Our previous study shows that 6-O-acyl derivatives of L-ascorbic acid inhibits more markedly cell growth of mouse Ehrlich carcinoma than ascorbic acid. The present study shows that 6-O-palmitoyl ascorbic acid but not ascorbic acid prolongs the lifespan of mice into which tumors such as Meth A fibrosarcoma, MM46 mammary carcinoma, Ehrlich carcinoma and sarcoma 180 are implanted. The potentiated cytotoxicity of 6-O-palmitoyl ascorbic acid is not due to an increase in duration time of the cytotoxic action, because 6-O-palmitoyl ascorbic acid is gradually inactivated during contact with tumor cells and exhibits a similar action time curve to that of ascorbic acid as shown by clonal growth assay. Cytotoxicity of 6-O-palmitoyl ascorbic acid is markedly diminished by combined addition of catalase and superoxide dismutase (SOD), as shown by dye exclusion assay, whereas the cytotoxicity was slightly reduced by either enzyme alone but not by the specifically inactivated or heat-denatured enzymes. In contrast, cytotoxicity of ascorbic acid is abolished by catalyse but not SOD. Autooxidation of 6-O-palmitoyl ascorbic acid was not inhibited by catalase plus SOD. The results indicate that cytotoxicity of 6-O-palmitoyl ascorbic acid is attributed at least partly to both hydrogen peroxide (H2O2) and superoxide (O2-.) generated at the early stage. Cytotoxicity of 6-O-palmitoyl ascorbic acid is also appreciably attenuated by singlet oxygen (1O2) scavengers such as hydroquinone, 1,4-diazobicyclo-2,2,2-octane or sodium azide, but not by hydroxyl radical scavengers including butylated hydroxytoluene, D-mannitol, benzoic acid and ethanol. Thus, in contrast to cytotoxicity of ascorbic acid mediated entirely by H2O2 initially generated, acylated ascorbic acid produces a diversity of active oxygen species including H2O2, O2-. and other species secondarily generated via disproportion, which may be additively involved in the enhanced cytotoxic action.  相似文献   

8.
Singlet molecular oxygen, O(2)(a(1)Delta(g)), has been detected from single neurons and HeLa cells in time-resolved optical experiments by its 1270 nm phosphorescence (a(1)Delta(g)--> X(3)Sigma(-)(g)) upon irradiation of a photosensitizer incorporated into the cell. The cells were maintained in a buffered medium and their viability was assessed by live/dead assays. To facilitate the detection of singlet oxygen, intracellular H(2)O was replaced with D(2)O by an osmotic de- and rehydration process. The effect of this insult on the cells was likewise assessed. The data indicate that, in the complicated transition from a "live" to "dead" cell, the majority of our cells have the metabolic activity and morphology characteristic of a live cell. Quenching experiments demonstrate that the singlet oxygen lifetime in our cells is principally determined by interactions with intracellular water and not by interactions with other cell constituents. The data indicate that in a viable, metabolically-functioning, and H(2)O-containing cell, the lifetime of singlet oxygen is approximately 3 micros. This is consistent with our previous reports, and confirms that the singlet oxygen lifetime in a cell is much longer than hitherto believed. This implies that, in a cell, singlet oxygen is best characterized as a selective rather than reactive intermediate. This is important when considering roles played by singlet oxygen as a signaling agent and as a component in events that result in cell death. The data reported herein also demonstrate that spatially-resolved optical probes can be used to monitor selected events in the light-induced, singlet-oxygen-mediated death of a single cell.  相似文献   

9.
Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) have been proposed to be activated in cells exposed to ultraviolet A (UVA) radiation (320-400 nm) and to be involved in photocarcinogenesis. Singlet oxygen and hydrogen peroxide are being discussed as mediators of the activation of signal transduction pathways by UVA. It is demonstrated here that EGFR is not activated in cells exposed to UVA in the absence of extracellular photosensitizers. Rather, UVA was capable of activating the EGFR and the related ErbB2 receptor tyrosine kinase in HeLa cells and human keratinocytes only under conditions that allowed for the extracellular photochemical generation of H(2)O(2), such as when cells were covered with cell culture medium during exposure to UVA. Pretreatment of cells with vanadate was required for UVA-induced EGFR activation, pointing to the involvement of protein tyrosine phosphatases. Unlike H(2)O(2), photochemically generated singlet oxygen did not activate EGFR but instead impaired the activation of EGFR by its ligand, EGF. In summary, extracellularly generated H(2)O(2) mediates UVA-induced activation of the EGFR and of ErbB2, whereas intracellular generation of reactive oxygen species upon exposure of cells to UVA is not sufficient for activation of the receptor.  相似文献   

10.
Polluted air and the derived photochemical smog are the sources of free radicals in the atmosphere. Organic peroxides present in the smog mediate formation of peroxide radical. Oxygen species are formed by purely physical mechanisms, for instance, energy consumption converts molecular oxygen to an excited singlet state. Six active oxygen species are known: ozone, atomic oxygen, perhydroxyl, superoxide, and singlet oxygen. Singlet oxygen is the most harmful oxygen product for living cells, while hydrogen peroxide is the least harmful. Molecular oxygen is hardly toxic for prokaryotes due to an efficient protection of microbial cells by specific enzymes. This work experimentally confirms the harmlessness of molecular oxygen.  相似文献   

11.
p38 mitogen-activated protein kinase is activated and involved in cleavage of caspase-3 during apoptosis induced by a number of stimuli. However, the signaling events triggered by p38 that result in caspase-3 activation are still unknown. In human leukemia cells, two reactive oxygen species, singlet oxygen and hydrogen peroxide (H(2)O(2)), selectively stimulated the phosphorylation of p38. Preincubation of cells with SB203580, a specific inhibitor of p38, dose dependently inhibited DNA fragmentation induced by singlet oxygen but not by H(2)O(2). Protection from apoptosis by SB203580 correlated with inhibition of caspase-3, and several events that are associated with caspase-3 activation, including Bid cleavage, decrease in mitochondrial transmembrane potential and release of cytochrome c from mitochondria, whereas caspase-8 cleavage was not affected by this inhibitor. In contrast, blockade of caspase-8 with Ile-Glu-Thr-Asp-fluoromethyl ketone is sufficient to prevent formation of DNA fragments and to inhibit all the above signaling events, with exception of p38 phosphorylation, in both singlet oxygen- and H(2)O(2)-treated cells. These data suggest that caspase-3 activation is regulated through redundant signaling pathways that involve p38 and caspase-8 acting upstream of Bid during singlet oxygen-induced apoptosis, whereas the activation of caspase-3 by H(2)O(2) is only governed by a caspase-8-mediated apoptotic pathway.  相似文献   

12.
Regulation of antioxidant enzymes.   总被引:16,自引:0,他引:16  
E D Harris 《FASEB journal》1992,6(9):2675-2683
Free radicals generated by a partial reduction of O2 pose a serious hazard to tissues and vital organs, especially membrane lipids, connective tissues, and the nucleic acids of cells. For protection, enzymes have evolved that specifically attack O2-, hydrogen, and organic peroxides, and repair any damage incurred to DNA. With few exceptions, antioxidant enzymes are found in all aerobic and aerotolerant anaerobic organisms. Logic assumes that a basal level of antioxidant enzyme activity is maintained at all times. This may be true. Yet cells must have ways to amplify antioxidant enzyme activity to counter sudden increases in oxygen metabolites. The full details of that regulation are slowly coming to light. Bacteria possess a series of elaborate and interacting genes that can sense specific increases in intracellular H2O2 and O2-. In higher organisms, hormones and metal ion cofactors impose pre- and posttranslational control over the genetic expression of antioxidant enzymes. Furthermore, aging, cellular differentiation, and organ specificity must also be factored into the final equation in higher organisms. This review will discuss some of the more recent findings relevant to antioxidant enzyme regulation in bacteria and higher organisms.  相似文献   

13.
The harmful effects of ultraviolet (UV) exposure on the skin are associated with the generation of reactive oxygen species (ROS) such as superoxide anion radical ( O(2)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radical ( OH), and singlet oxygen ((1)O(2)) as well as with lipid peroxides and their radicals (LOOH and LOO ). To give direct proof that such ROS are generated in UV-exposed skin, we proposed the in vivo detection and imaging method in which both a sensitive and specific chemiluminescence (CL) probe, such as CLA, and an ultralow-light imaging apparatus with a CCD camera were used. With this method we found that O(2)(-) is formed intrinsically and that (1)O(2) and O(2)(-) are generated in the UVA-exposed skin of mice. In addition, we indicated that antioxidative ability against ROS in the skin of hairless rats decreased as age increased. Using these findings, we demonstrated the protective abilities of sodium ascorbate, caffeic acid, essential aroma oils, and zinc(ii) ion and its complexes, which we administered to mice both topically and orally. We present a review for the current state of our research proposing the sensitive CL method as a useful in vivo tool in photobiological research for the detection of oxidative stress as well as for the evaluation of antioxidative agents to the skin.  相似文献   

14.
Human lens proteins become progressively modified by tryptophan-derived UV filter compounds in an age-dependent manner. One of these compounds, kynurenine, undergoes deamination at physiological pH, and the product binds covalently to nucleophilic residues in proteins via a Michael addition. Here we demonstrate that after covalent attachment of kynurenine, lens proteins become susceptible to photo-oxidation by wavelengths of light that penetrate the cornea. H2O2 and protein-bound peroxides were found to accumulate in a time-dependent manner after exposure to UV light (lambda > 305-385 nm), with shorter-wavelength light giving more peroxides. Peroxide formation was accompanied by increases in the levels of the protein-bound tyrosine oxidation products dityrosine and 3,4-dihydroxyphenylalanine, species known to be elevated in human cataract lens proteins. Experiments using D2O, which enhances the lifetime of singlet oxygen, and azide, a potent scavenger of this species, are consistent with oxidation being mediated by singlet oxygen. These findings provide a mechanistic explanation for UV light-mediated protein oxidation in cataract lenses, and also rationalize the occurrence of age-related cataract in the nuclear region of the lens, as modification of lens proteins by UV filters occurs primarily in this region.  相似文献   

15.
Singlet oxygen production by human eosinophils   总被引:2,自引:0,他引:2  
Human eosinophils, stimulated with phorbol myristate acetate, were found to produce 1268 nm chemiluminescence characteristic of singlet oxygen. Singlet oxygen generation required the presence of bromide ion. A bromide ion concentration of 100 microM, comparable to the total bromine content of whole blood, was sufficient for the eosinophils to generate measurable amounts of singlet oxygen. For the conditions used (10(7) cells/ml and 10 micrograms/ml phorbol myristate acetate), the duration of the singlet oxygen generation was brief, about 5 min, and the total yield of singlet oxygen was modest, 1.0 +/- 0.1 microM. The cells remained viable after the singlet oxygen production ceased. This is the first demonstration of singlet oxygen production from living cells. The singlet oxygen generated by eosinophils likely results from a peroxidase-catalyzed mechanism, since a purified eosinophil peroxidase-hydrogen peroxide-bromide system was also shown to produce singlet oxygen. The unique properties of eosinophil peroxidase are illustrated by the fact that at p2H 7.0 and with 100 microM bromide, eosinophil peroxidase generated 20 +/- 2% of the theoretical yield of singlet oxygen, whereas under identical conditions, myeloperoxidase and lactoperoxidase produced only 1.0 +/- 0.1% and -0.1 +/- 0.1%, respectively.  相似文献   

16.
Apoptosis is known to be induced by direct oxidative damage due to oxygen-free radicals or hydrogen peroxide or by their generation in cells by the actions of injurious agents. Together with glutathione peroxidase and catalase, peroxiredoxin (Prx) enzymes play an important role in eliminating peroxides generated during metabolism. We investigated the role of Prx enzymes during cellular response to oxidative stress. Using Prx isoforms-specific antibodies, we investigated the presence of Prx isoforms by immunoblot analysis in cell lysates of the MCF-7 breast cancer cell line. Treatment of MCF-7 with hydrogen peroxide (H2O2) resulted in the dose-dependent expressions of Prx I and II at the protein and mRNA levels. To investigate the physiologic relevance of the Prx I and II expressions induced by H2O2, we compared the survivals of MCF10A normal breast cell line and MCF-7 breast cancer cell line following exposure to H2O2. The treatment of MCF10A with H2O2 resulted in rapid cell death, whereas MCF-7 was resistant to H2O2. In addition, we found that Prx I and II transfection enabled MCF10A cells to resist H2O2-induced cell death. These findings suggest that Prx I and II have important functions as inhibitors of cell death during cellular response to oxidative stress.  相似文献   

17.
Myeloperoxidase in micromolar concentrations reacting with half-millimolar stock solution H2O2 in acetate buffer containing KBr and in 50% D2O (pH + pD = 4.5) at 298 K is shown to generate singlet delta molecular oxygen efficiently. The near infrared electronic emission of singlet oxygen at 1268 nm is detected directly by novel ultrasensitive IR spectrophotometer equipment. The quantum efficiency of singlet oxygen generation by the MPO X Br- X H2O2 reaction is shown to be comparable with that of the standard chemical reaction OCl- X H2O2 at identical peroxide concentrations.  相似文献   

18.
Peroxidases of the peroxiredoxin (Prx) family catalyze the reduction of H(2)O(2) and lipid peroxides. The effects of H(2)O(2), 12-O-tetradecanoylphorbol 13-acetate (TPA), and silica on the abundance of two cytosolic isoforms of Prx (PrxI and PrxII) were examined in Rat2 cells. TPA induces the production of reactive oxygen species (ROS) in various mammalian cell types, and silica induces the production of ROS in Rat2 cells. Whereas H(2)O(2) and TPA did not affect the concentration of PrxI or Prx II, silica triggered a rapid degradation of both Prx enzymes. Silica also induced degradation of the NF-kappaB inhibitor IkappaB-alpha. N-Acetylcysteine and diphenyleneiodonium, both of which inhibit the accumulation of intracellular ROS, each blocked silica-induced degradation of IkappaB-alpha but had no effect on that of the Prx enzymes, suggesting that ROS do not contribute to Prx proteolysis. The silica-induced degradation of Prx enzymes was also insensitive to the proteasome inhibitors MG132 and lactacystin, whereas IkappaB-alpha proteolysis was completely blocked by these inhibitors. Experiments with the Ca(2+) ionophore A23187 indicated that a Ca(2+)-dependent protease such as calpain might contribute substantially to silica-induced degradation of PrxII, but only moderately to that of PrxI. These results indicate that silica increases cellular oxidative stress not only by inducing ROS production, but also by triggering the degradation of Prx enzymes that are responsible for elimination of cellular ROS. Such aggravated oxidative stress might be important in the initial pathogenesis of silica-associated pulmonary diseases.  相似文献   

19.
T Ochi  M Ohsawa 《Mutation research》1985,143(3):137-142
The effect of various scavengers of active oxygen species on the induction of chromosomal aberrations by cadmium chloride (CdCl2) was investigated in cultured Chinese hamster V79 cells. Incidences of chromosomal aberrations by CdCl2 were partially or fully reduced by the presence of catalase, mannitol (a scavenger of hydroxyl radicals) and butylated hydroxytoluene (BHT, an antioxidant). These findings may indicate participation of the active oxygen species such as hydrogen peroxide (H2O2) or hydroxyl radicals in the clastogenicity of cadmium. In contrast, superoxide dismutase (SOD) and dimethylfuran (a scavenger of singlet oxygen) did not influence incidences of chromosomal aberrations by CdCl2. These results suggest that superoxide anion and singlet oxygen are not directly involved in the clastogenicity of the metal. The presence of aminotriazole (an inhibitor of catalase) increased incidences of chromosomal aberrations by CdCl2. This emphasizes participation of H2O2 in the clastogenicity of cadmium.  相似文献   

20.
The oxygen-dependent photooxidation of NADPH in the presence of hematoporphyrin in D2O results in the production of enzymatically active NADP+. The reaction is not inhibited by benzoate, mannitol, superoxide dismutase, or catalase. Moreover, addition of either potassium superoxide or H2O2 does not potentiate the reaction. This suggests OH-, H2O2, and O-2 are not likely to be the reactive oxygen species in this system. The oxidation is inhibited by various singlet oxygen quenchers and inhibitors such as 1,4-diazabicyclo[2.2.2]octane, 2,5-dimethylfuran plus methanol, histidine, and methionine. In addition, the rate of oxidation in H2O is less than one-fifth of that in D2O. The results suggest a singlet oxygen-mediated process. During the oxidation, no superoxide radical production could be detected with either ferricytochrome c or nitroblue tetrazolium. However, H2O2 has been found as one of the products. These observations are consistent with an oxidation-reduction reaction between singlet oxygen and NADPH to form H2O2 and NADP+, catalyzed by the light-activated photosensitizer hematoporphyrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号