首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
F Marcus 《Biochemistry》1976,15(16):3505-3509
Modification of pig kidney fructose-1,6-bisphosphatase with 2,3-butanedione in borate buffer (pH 7.8) leads to the loss of the activation of the enzyme by monovalent cations, as well as to the loss of allosteric adenosine 5'-monophosphate (AMP) inhibition. In agreement with the results obtained for the butanedione modification of arginyl residues in other enzymes, the effects of modification can be reversed upon removal of excess butanedione and borate. Significant protection to the loss of K+ activation was afforded by the presence of the substrate fructose 1,6-bisphosphate, whereas AMP preferentially protected against the loss of AMP inhibition. The combination of both fructose 1,6-bisphosphate and AMP fully protected against the changes in enzyme properties on butanedione treatment. Under the latter conditions, one arginyl residue per mole of enzyme subunit was modified, whereas three arginyl residues were modified by butanedione under conditions leading to the loss of both potassium activation and AMP inhibition. Thus, the modification of two arginyl residues per subunit would appear to be responsible for the change in enzyme properties. The present results, as well as those of a previous report on the subject (Marcus, F. (1975), Biochemistry 14, 3916-3921) support the conclusion that one arginyl residue per subunit is essential for monovalent cation activation, and another arginyl residue is essential for AMP inhibition. A likely role of the latter residue could be its involvement in the binding of the phosphate group of AMP.  相似文献   

2.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

3.
Initial rate kinetic studies with bovine liver fructose-1,6-bisphosphatase were carried out in both directions of the reaction to determine the sequence of product release from the enzyme. Product inhibition by fructose-6-P was found to be S-linear, I-linear noncompetitive relative to fructose-1,6-bisphosphate, whereas inorganic orthophosphate was determined to be linear competitive with respect to the substrate. The kinetics of the reverse reaction were studied by coupling the phosphatase reaction to the aldolase, triosephosphate isomerase, and glycerolphosphate dehydrogenase reactions. The kinetic results were found to be in harmony with the Uni Bi ordered and random sequential mechanisms as well as a Uni Bi ping-pong mechanism. The nomenclature is that of Cleland (Cleland, W.W. (1963) Biochim. Biophys. Acta 67, 104-137). However, nonkinetic considerations, when taken together with the kinetic results, suggest that the steady state ordered Uni Bi mechanism is the most likely possibility. There is evidence that isomerization of the binary complex of enzyme and phosphate occurs in the kinetic mechanism. Although magnesium is required for the reverse reaction, there is no evidence to suggest that the enzyme discriminates between the magnesium-associated or divalent cation-free forms of the substrates.  相似文献   

4.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

5.
Human liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been purified 1200-fold using a heat treatment step followed by absorption on phosphocellulose at pH 8 and specific elution with buffer containing the substrate (fructose 1,6-bisphosphate) and allosteric effector (AMP). The enzyme is homogeneous in electrophoresis in polyacrylamide gel, in the presence and absence of denaturing agent. It has a molecular weight of 144 000 and is composed of four identical or nearly identical subunits. Fluorescence spectra indicate that the enzyme does not contain tryptophan residues. The pH optimum is 7.5 and the Km is determined as 0.8 microM. The enzyme is inhibited by AMP in cooperative manner with a K0 x 5 of 6 microM.  相似文献   

6.
7.
Native chicken liver fructose-1,6-bisphosphatase (Fru-P2ase) can bind to blue dextranSepharose affinity column and is not displaced by its sugar-phosphate substrate; however; it is readily eluted by the inhibitor 5′-AMP. Treatment of Fru-P2ase with pyridoxal 5′-phosphate (pyridoxal-P) in the presence of the substrate, fructose 1,6-bisphosphate, followed by reduction with NaBH4 leads to the formation of active pyridoxal-P derivatives of the enzyme showing diminished sensitivity to AMP inhibitor. The modified enzyme does not bind to the affinity column. On the other hand, in the presence of AMP modification of Fru-P2ase with pyridoxal-P occurs at the catalytic site; this modification does not alter its binding behavior toward the dye ligand. Blue dextran can also protect Fru-P2ase against AMP inhibition, and it is a competitive desensitizer for the nucleotide ligand. The results establish that blue dextran binds specifically to the allosteric site of the enzyme, and that the structure of this site may resemble that of the dinucleotide fold in other enzymes. Like native Fru-P2ase, digestion of pyridoxal-P-Fru-P2ase (with regulatory properties altered) with subtilisin causes a severalfold increase in the catalytic activity measured at pH 9.2, without significant change in the activity at pH 7.5, and produces a peptide with 56 amino acids. The residual subunit, Mr ~ 30,000, was found to contain all of the incorporated pyridoxal-P.  相似文献   

8.
Fructose-1,6-bisphosphatase (EC 3.1.3.11) activity increased markedly (greater than 10-fold) upon illumination of wheat leaves. Darkening caused a relatively slow but complete reversal of light activation. The effects of O2 and CO2 concentration and light intensity on fructose-bisphosphatase activation were measured. In ratelimiting light, 2% O2 stimulated enzyme activity, whereas varying the CO2 concentration had little effect. In saturating light, lowering the oxygen tension had no effect, but CO2 at near-saturating concentrations for photosynthesis inhibited enzyme activity. Dark inactivation of the enzyme was completely prevented by incubation of leaves in N2, but was facilitated by O2, indicating that O2 is the major oxidant in darkened leaves. It is argued that while fructose bisphosphatase is redox-regulated in leaves, modulation of enzyme activity by this mechanism is unlikely to contribute to the regulation of CO2 fixation in leaves.  相似文献   

9.
Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.  相似文献   

10.
We have isolated and sequenced two overlapping cDNA fragments which could encode the complete amino acid sequence of rat testis fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. Northern blot analysis revealed that the major 2-kilobase mRNA isolated from rat testis hybridized with a cDNA fragment. A full length cDNA, which encoded a protein of 468 amino acids, was constructed and expressed in Escherichia coli. The expressed protein, purified to homogeneity, showed a Mr of 55,000 by gel electrophoresis under denaturing conditions, compared to the deduced Mr of 54,023. Fru-6-P,2-kinase:Fru-2,6-bisphosphatase with the same Mr 55,000 was also present in rat testis extract. The active enzyme was a dimer as judged by molecular sieve filtration. The expressed enzyme was bifunctional with specific activities of 90 and 22 milliunits/mg of the kinase and the phosphatase activities, respectively. Various kinetic constants of the expressed fructose 6-P,2-kinase were KmFru 6-P = 85 microM and KmATP = 270 microM, and those of fructose 2,6-bisphosphatase were KmFru 2,6-P2 = 21 microM and KiFru 6-P = 3.4 microM. The enzyme was phosphorylated by Fru-2,6[2-32P]P2 and also by protein kinase C, but not by cAMP-dependent protein kinase, which is in contrast to the liver and heart isozymes.  相似文献   

11.
Rapid-quench kinetic measurements yielded presteady-state rate data for rabbit liver fructose-1,6-bisphosphatase (FBPase) (a tetramer of four identical subunits) that are triphasic: the rapid release of Pi (complete within 5 ms), followed by a second reaction phase liberating additional Pi that completes the initial turnover of two or four subunits of the enzyme (requiring 100-150 ms), and a steady-state rate whose magnitude depends on the [alpha-Fru-1,6-P2]/[FBPase] ratio. With Mg2+ in the presence of excess alpha-fructose 1,6-bisphosphate (alpha-Fru-1,6-P2) all four subunits turn over in the pre steady state; with Mn2+ only two of the four are active. Thus the expression of half-site reactivity is a consequence of the nature of the metal ion and not a subunit asymmetry. In the presence of limiting alpha-anomer concentrations only two of the four subunits now remain active with Mg2+ as well as with Mn2+ in the pre steady state. However, so that the amount of Pi released can be accounted for, a beta leads to alpha anomerization or direct beta utilization is required at the active site of one subunit. Such behavior is consistent with the two-state conformational hysteresis displayed by the enzyme and altered affinities manifested within these states for alpha and beta substrate analogues. Under these limiting conditions the subsequent steady-state rate is limited by the beta leads to alpha solution anomerization. These data in combination with pulse--chase experiments permit evaluation of the internal equilibrium, which in the case of Mg2+ is unequivocally higher in favor of product complexes and represents a departure from balanced internal substrate-product complexes.  相似文献   

12.
Chloroplast fructose-1,6-bisphosphatase: structure and function   总被引:1,自引:0,他引:1  
Redox regulation of photosynthetic enzymes has been a preferred research topic in recent years. In this area chloroplast fructose-1,6-bisphosphatase is probably the most extensively studied target enzyme of the CO2 assimilation pathway. This review analyzes the structure, biosynthesis, phylogeny, action mechanism, regulation and kinetics of fructose-1,6-bisphosphatase in the light of recent findings on structure–function relationship, and from a molecular biology viewpoint. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Phosphorylated fructose-1,6-bisphosphatase (FBPase) was isolated from rabbit muscle in an SDS/PAGE homogeneous form. Its dephosphorylation with alkaline phosphatase revealed 2.8 moles of inorganic phosphate per mole of FBPase. The phosphorylated FBPase (P-FBPase) differs from the dephosphorylated enzyme in terms of its kinetic properties like K(m) and k(cat), which are two times higher for the phosphorylated FBPase, and in the affinity for aldolase, which is three times lower for the dephosphorylated enzyme. Dephosphorylated FBPase can be a substrate for protein kinase A and the amount of phosphate incorporated per FBPase monomer can reach 2-3 molecules. Since interaction of muscle aldolase with muscle FBPase results in desensitisation of the latter toward AMP inhibition (Rakus & Dzugaj, 2000, Biochem. Biophys. Res. Commun. 275, 611-616), phosphorylation may be considered as a way of muscle FBPase activity regulation.  相似文献   

14.
Fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrase, EC 3.1.3.11) of Bacillus subtilis is a constitutive enzyme that was purified 1000-fold (30% yield) to 80% purity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis where it exhibits a band corresponding to 72,000 daltons. It sediments at 15 S in sucrose density gradients indicating a molecular weight of 380,000, but apparently is very asymmetric. Its activity is irreversibly inactivated in the absence of Mn2+. The enzyme specifically catalyzes dephosphorylation of D-fructose 1,6-bisphosphate with a pH optimum of 8.0. It has 40 to 60% of full activity in the absence of P-enolpyruvate; 20 microM P-enolpyruvate activates it maximally. High concentrations of monovalent cations also activate, NH4+ being most effective. Inhibitors fall into two groups. 1) Nucleoside monophosphates, phosphorylated coenzymes, and polynucleotides inhibit competitively with P-enolpyruvate (AMP (Ki = 2 microM) and dAMP are most effective). 2) The inhibition by nucleoside di- and triphosphates, PPi, and highly phosphorylated nucleotides (guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and adenosine 5'-triphosphate 3'-diphosphate are most effective) is not competed by P-enolpyruvate but is partially overcome by fructose 1,6-bisphosphate (2 microM). Therefore, highly phosphorylated nucleotides (pppGpp and others), produced in over 0.2 mM concentrations upon step down from fast to slow growth rates (Gallant, J., and Lazzarini, R.A. (1976) in Protein Synthesis (McConkey, E.H., ed) Vol. 2, pp. 309-349, Marcel Dekker, Inc., New York), can reduce the conversion rate of fructose 1,6-bisphosphate to fructose 6-phosphate during gluconeogenesis. Comparing glycolytic growth on D-glucose and gluconeogenic growth on L-malate, the intracellular concentrations of fructose 1,6-bisphosphate differ but are both above the Km (13 microM) of the enzyme, those of AMP are similar, whereas those of P-enolpyruvate (0.18 mM versus 1.3 mM) indicate that the enzyme has only 40% of its full activity during glycolysis; nucleotides other than AMP may inhibit additionally. Thus, the futile cycle of fructose 1,6-bisphosphate synthesis and degradation during glycolysis is partially avoided, but the cells are poised for rapid adaptation upon change to gluconeogenic growth conditions.  相似文献   

15.
Cytoplasmic fructose-1,6-bisphosphatase has been purified from spinach leaves to apparent homogeneity. The enzyme is a tetramer of molecular weight about 130,000. At pH 7.5, the Km for fructose 1.6-bisphosphate was 2.5 micron, and for MgCl2 0.13 mM; the enzyme was specific for fructose 1,6-bisphosphate. Saturation with Mg2+ was achieved with lower concentrations at pH 8 than at pH 7. AMP and high concentrations of fructose 1,6-bisphosphate inhibited enzyme activity. Ammonium sulfate relieved the latter inhibition but was itself inhibitory when substrate concentrations were low. Acetylation studies demonstrated that the AMP regulatory site was distinct from the catalytic site. Cytoplasmic fructose-1,6-bisphosphatase may contribute to the regulation of sucrose biosynthesis in plant leaves.  相似文献   

16.
The regulatory properties of chloroplast fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, (EC 3.1.3.11) were examined with a homogeneous enzyme preparation isolated from spinach leaves. The activation of the enzyme, that was earlier shown to occur via reduced thioredoxin, was found to be accompanied by a structural change that took place more slowly than the rate of catalysis. The recently found deactivation of the thioredoxin-activated enzyme by physiological oxidants such as oxidized glutathione and dehydroascorbic acid was also slow relative to catalysis. Under the conditions used, the activated enzyme showed a pH optimum of about 8.0, whereas the corresponding value for the non-activated form was pH 8.8. The importance of the thioredoxin-linked mechanism of enzyme regulation that is effected through photoreduced ferredoxin and ferredoxin-thioredoxin reductase is discussed in relation to other light-controlled regulatory agents in chloroplasts.  相似文献   

17.
Presently, an in silico modeling was carried out on a series of 63 phosphonic acid-containing thiazole derivatives as fructose-1,6-bisphosphatase (FBPase) inhibitors using CoMFA/CoMSIA and molecular docking methods. The CoMFA and CoMSIA models using 51 molecules in the training set gave r cv2 values of 0.675 and 0.619, r 2 values of 0.985 and 0.979, respectively. The systemic external validation indicated that our CoMFA and CoMSIA models possessed high predictive powers with r 02 values of 0.995 and 0.994, r m(test)2 values of 0.887 and 0.860, respectively. The 3D contour maps of the CoMFA and CoMSIA provided smooth and interpretable explanation of the structure-activity relationship for the inhibitors. Molecular docking studies revealed that a phosphonic group was essential for binding to the AMP binding site, and some key features were also identified. The analyses of the 3D contour plots and molecular docking results permitted interesting conclusions about the effects of different substituent groups at different positions of the common scaffold, which might guide the design of novel FBPase inhibitors with higher activity and bioavailability. A set of 60 new analogues were designed by utilizing the results revealed in the present study, and were predicted with significantly improved potencies in the developed models. The findings can be quite useful to aid the designing of new fructose-1,6-biphophatase inhibitors with improved biological response.  相似文献   

18.
The fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) from the spore-forming bacterium Bacillus licheniformis was purified approximately 800-fold (with a 20% yield of activity) by a procedure that included ammonium sulfate precipitation, precipitation by MnCl2, and gamma-alumina gel absorption. Catalysis by this enzyme in vitro was specific for fructose 1,6-bisphosphate (Km of approximately 20 muM) and proceeded optimally at pH 8.0 to 8.5. Fructose-1,6-bisphosphatase was found to be rapidly inactivated by incubation in the presence of AMP or in the absence of Mn2+. The AMP inactivation was prevented by adding P-enolpyruvate to the incubation mixture. The enzyme was slowly inactivated when incubated in the presence of stabilizing concentrations of Mn2+ (5 mM) at protein concentrations of less than 8 mg of protein per ml. An additional system is produced during sporulation which specifically inactivates fructose bisphosphatase in vitro. This system, which is distinctly different from the AMP inactivating system, can be blocked by P-enolpyruvate. This fructose bisphosphatase, like fructose bisphosphatases from other sources, was strongly inhibited by AMP, exhibiting a Ki of approximately 5 muM. This inhibition, however, could be completely overcome by P-enolpyruvate. P-enolpyruvate was also found to be an activator of the enzyme and exhibited a Km of approximately 2 muM. This activation was prevented in a competitive manner by AMP, exhibiting a Ki of approximately 5 muM. No other effector of fructose bisphosphatase was identified in an extensive search. The specific activity of fructose bisphosphatase in crude extracts was found to be independent of the stage of the life cycle of the bacterium or of the nature of the carbon-energy source supporting growth. Immunoprecipitation studies indicate that no new species of fructose biphosphatase is produced during gluconeogenic growth or sporulation. The enzyme extracted from cells under a variety of physiological conditions exhibited a molecular weight of about 5 times 10-5 as determined by sucrose density centrifugation. Therefore, it is proposed that a single constitutively synthesized fructose bisphosphatase is present in B. licheniformis. Measurements of the intracellular level of fructose 1,6-bisphosphate indicate that the variation in the level of substrate throughout growth (1 mM) and sporulation (0.3 mM) does not regulate the in vivo activity of this enzyme, since the Km of the enzyme for fructose 1,6-bisphosphate is approximately 10-fold lower than the lowest in vivo concentration of substrate. P-enolpyruvate is proposed as the major regulator of fructose bisphosphatase activity in vivo.  相似文献   

19.
Digestion of native sheep liver fructose-1,6-bisphosphatase by subtilisin resulted in a parallel decrease in activity and sensitivity to AMP inhibition at neutral pH and an increase in specific activity at alkaline pH. During the course of digestion the 35,500 subunit was progressively replaced by two peptides of approximately 29,000 and 6,000 molecular weight, respectively.A comparison of native and digested fructosebisphosphatase showed no significant changes in molecular weight or tryptophan content; however, their catalytic and regulatory properties were markedly different.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号