首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

2.
Phosphorylation of free galactose by lactic streptococci was mediated by an adenosine triphosphate (ATP)-dependent kinase. The phosphoenolpyruvate (PEP) phosphotransferase system (PTS) was involved to a limited extent in transport of the sugar. The conversion of free galactose to glucose also was demonstrated, and uridine diphosphogalactose-4-epimerase was demonstrated to account for this change. Galactose, supplied as lactose, was phosphorylated during transport by means of the PTS with PEP as the phosphate donor. Data also indicated that galactose derived from lactose was catabolized by the glycolytic pathway. Results showed the participation of ATP or PEP, or both, in the phosphorylation of five growth sugars for lactic streptococci, namely, galactose, glucose, lactose, maltose, and mannose. Free galactose was phosphorylated exclusively by ATP except when cells were grown on galactose; in this case, slight involvement of PEP in phosphorylation also was noted. Lactose phosphorylation was much more effective with PEP except when cells were grown on lactose, in which case ATP was equally effective. Glucose was phosphorylated to about the same degree by either ATP or PEP.  相似文献   

3.
A number of species of lactobacilli were examined for their ability to ferment both the glucose and galactose moieties of lactose. Lactobacillus helveticus strains metabolized both the glucose and galactose moieties, whereas L. bulgaricus, L. lactis, and L. acidophilus strains metabolized only the glucose moiety and released galactose into the growth medium. All four species tested contained β-galactosidase activity, and no significant phospho-β-galactosidase activity was observed. L. bulgaricus and L. helveticus had a phosphoenolpyruvate (PEP):glucose phosphotransferase system for the uptake of glucose, but no evidence for a PEP:lactose phosphotransferase or PEP:galactose phosphotransferase system was obtained.  相似文献   

4.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

5.
In the absence of an exogenous energy source, galactose-grown cells of Streptococcus lactis ML3 rapidly accumulated thiomethyl-beta-D-galactopyranoside (TMG) and 2-deoxyglucose to intracellular concentrations of 40 to 50 mM. Starved cells maintained the capacity for TMG uptake for many hours, and accumulation of the beta-galactoside was insensitive to proton-conducting ionophores (tetrachlorosalicylanilide and carbonylcyanide-m-chlorophenyl hydrazone) and sulfydryl group reagents including iodoacetate and N-ethylmaleimide. Fluorimetric analysis of glycolytic intermediates in extracts prepared from starved cells revealed (a) high intracellular levels of phosphoenolpyruvate (13 mM; PEP) and 2-phosphoglycerate (approximately 39 mM; 2-PG), but an absence of other metabolites including glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-diphosphate, and triosephosphates. The following criteria showed PEP (and 2-PG) to be the endogenous energy source for TMG accumulation by the phosphotransferase system: the intracellular concentrations of PEP and 2-PG decreased with concomitant uptake of TMG, and a close correlation was observed between maximum accumulation of the beta-galactoside and the total available concentration of the two intermediates; TMG accumulated as an anionic derivative, which after extraction and incubation with alkaline phosphatase (EC 3.1.3.1) formed the original analogue; fluoride inhibition of 2-phospho-D-glycerate hydrolyase (EC 4.2.1.11) prevented the conversion of 2-PG to PEP, and uptake of TMG by the starved cells was reduced by 80%; and the stoichiometric ratio [TMG] accumulated/[PEP] consumed was almost unity (0.93). In cells metabolizing glucose, all intermediates listed in (a) and (b) were found. Upon exhaustion of glucose from the medium, the metabolites in (b) were not longer detectable, while the intracellular concentrations of PEP and 2-PG increased to the levels previously observed in starved cells. The glycolytic intermediates in (b) are all in vitro heterotropic effectors of pyruvate kinase (adenosine 5'-triphosphate:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from S. lactis ML3. It is suggested that the capacity of starved cells to maintain high intracellular concentrations of PEP and 2-PG is a consequence of decreased in vivo activity of this key regulatory enzyme of glycolysis.  相似文献   

6.
Regulation of sugar transport and metabolism in lactic acid bacteria   总被引:6,自引:0,他引:6  
Abstract The phosphoenolpyruvate (PEP)-dependent lactose: phosphotransferase system (PTS), P-β-galactosidase, and enzymes of the d -tagatose-6P pathway, are prerequisite for rapid homolactic fermentation of lactose by Group N ('starter') streptococci. Moreover, the reactions of transport and catabolism constitute an open cycle in which ATP and lactic acid are metabolic products. The efficient and controlled operation of this cycle requires 'fine-control' mechanisms to ensure: (i) tight coupling between transport and energy-yielding reactions, (ii) co-metabolism of both glucose and galactose moieties of the disaccharide, and (iii) coordination of the rate of sugar transport to the rate of sugar catabolism. The elucidation of these fine-control mechanisms in intact cells of Streptococcus lactis has required the isolation of glucokinase (GK) and mannose-PTS defective mutants, the synthesis of novel lactose analogs, and the use of high resolution [31P]NMR spectroscopy. It has been established that PEP provides the crucial link between transport and energy-yielding reactions of the PTS: glycolysis cycle, and that both ATP-dependent glucokinase and PEP-dependent mannose-PTS can participate in the phosphorylation of intracellular glucose. Finally, evidence has been obtained in vivo, for modulation of pyruvate kinase activity in response to fluctuation in, concentrations of positive (FDP), and negative (Pi) effectors of the allosteric enzyme. Fine-control of pyruvate kinase activity may in turn regulate: (i) the distribution of PEP to either the PTS or ATP synthesis, (ii) overall activity of the PTS: glycolysis cycle, and (iii) the formation of the endogenous PEP-potential in starved organisms. The accumulation of non-metabolizable PTS sugars (e.g., 2-deoxy- d -glucose) by growing cells can perturb these fine-control mechanisms and, by establishment of a PEP-dissipating futile cycle, may result in bacteriostasis.  相似文献   

7.
Glucose uptake by Listeria monocytogenes Scott A was inhibited by the bacteriocin pediocin JD and by the protonophore carbonyl cyanide m-chlorophenyhydrazone. Experiments with monensin, nigericin, chlorhexidine diacetate, dinitrophenol, and gramicidin, however, showed that glucose uptake could occur in the absence of a proton motive force. L. monocytogenes cell extracts phosphorylated glucose when phosphoenolpyruvate (PEP) was present in the assay mixture, and whole cells incubated with 2-deoxyglucose accumulated 2-deoxyglucose-6-phosphate, indicating the presence of a PEP-dependent phosphotransferase system in this organism. Glucose phosphorylation also occurred when ATP was present, suggesting that a proton motive force-mediated glucose transport system may also be present. We conclude that L. monocytogenes Scott A accumulates glucose by phosphotransferase and proton motive force-mediated systems, both of which are sensitive to pediocin JD.  相似文献   

8.
We have established an efficient method for enzymatic production of cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) from inexpensive materials, N-acetylglucosamine (GlcNAc) and cytidine 5'-monophosphate (CMP). The Haemophilus influenzae nanE gene encoding GlcNAc 6-phosphate (GlcNAc 6-P) 2-epimerase and the Campylobacter jejuni neuB1 gene encoding N-acetylneuraminic acid (NeuAc) synthetase, both of whose products are involved in NeuAc biosynthesis, were cloned and co-expressed in Escherichia coli cells. We examined the synthesis of NeuAc from GlcNAc via GlcNAc 6-P, N-acetylmannosamine (ManNAc) 6-P, and ManNAc by the use of E. coli cells producing GlcNAc 6-P 2-epimerase and NeuAc synthetase, in expectation of biological functions of E. coli such as the supply of phosphoenolpyruvate (PEP), which is an essential substrate for NeuAc synthetase, GlcNAc phospholylation by the PEP-dependent phosphotransferase system, and dephospholylation of ManNAc 6-P. Eleven mM NeuAc was synthesized from 50 mM GlcNAc by recombinant E. coli cells with the addition of glucose as an energy source. Next we attempted to synthesize CMP-NeuAc from GlcNAc and CMP using yeast cells, recombinant E. coli cells, and H. influenzae CMP-NeuAc synthetase, and succeeded in efficient production of CMP-NeuAc due to a sufficient supply of PEP and efficient conversion of CMP to cytidine 5'-triphosphate by yeast cells.  相似文献   

9.
Phosphoenolypyruvate-dependent maltose:phosphotransferase activity was induced in cells of Fusobacterium mortiferum ATCC 25557 during growth on maltose. The disaccharide was rapidly metabolized by washed cells maintained under anaerobic conditions, but fermentation ceased immediately upon exposure of the cell suspension to air. Coincidentally, high levels of a phosphorylated derivative accumulated within the cells. Chemical and enzymatic analyses, in conjunction with data from 1H, 13C, and 31P nuclear magnetic resonance spectroscopy, established the structure of the purified compound as 6-O-phosphoryl-alpha-D-glucopyranosyl-(1-4)-D-glucose (maltose 6-phosphate). A method for the preparation of substrate amounts of this commercially unavailable disaccharide phosphate is described. Permeabilized cells of F. mortiferum catalyzed the phosphoenolpyruvate-dependent phosphorylation of maltose under aerobic conditions. However, the hydrolysis of maltose 6-phosphate (to glucose 6-phosphate and glucose) by permeabilized cells or cell-free preparations required either an anaerobic environment or addition of dithiothreitol to aerobic reaction mixtures. The first step in dissimilation of the phosphorylated disaccharide appears to be catalyzed by an oxygen-sensitive maltose 6-phosphate hydrolase. Cells of F. mortiferum, grown previously on maltose, fermented a variety of alpha-linked glucosides, including maltose, turanose, palatinose, maltitol, alpha-methylglucoside, trehalose, and isomaltose. Conversely, cells grown on the separate alpha-glucosides also metabolized maltose. For this anaerobic pathogen, we suggest that the maltose:phosphotransferase and maltose 6-phosphate hydrolase catalyze the phosphorylative translocation and cleavage not only of maltose but also of structurally analogous alpha-linked glucosides.  相似文献   

10.
The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway.  相似文献   

11.
Cells of Lactobacillus casei grown in media containing galactose or a metabolizable beta-galactoside (lactose, lactulose, or arabinosyl-beta-D-galactoside) were induced for a galactose-phosphoenolpyruvate-dependent phosphotransferase system (gal-PTS). This high-affinity system (Km for galactose, 11 microM) was inducible in eight strains examined, which were representative of all five subspecies of L. casei. The gal-PTS was also induced in strains defective in glucose- and lactose-phosphoenolpyruvate-dependent phosphotransferase systems during growth on galactose. Galactose 6-phosphate appeared to be the intracellular inducer of the gal-PTS. The gal-PTS was quite specific for D-galactose, and neither glucose, lactose, nor a variety of structural analogs of galactose caused significant inhibition of phosphotransferase system-mediated galactose transport in intact cells. The phosphoenolpyruvate-dependent phosphorylation of galactose in vitro required specific membrane and cytoplasmic components (including enzyme IIIgal), which were induced only by growth of the cells on galactose or beta-galactosides. Extracts prepared from such cells also contained an ATP-dependent galactokinase which converted galactose to galactose 1-phosphate. Our results demonstrate the separate identities of the gal-PTS and the lactose-phosphoenol-pyruvate-dependent phosphotransferase system in L. casei.  相似文献   

12.
In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (r(max) = 1.2 h) is lower than the glucose flux through glycolysis (r(max) = 1.5 h) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass h depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no P(i) (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as P(i) by hydrolysis with alkaline phosphatase (EC 3.1.3.1), whereas inorganic pyrophosphatase (EC 3.6.1.1) cannot hydrolyze the compound. The results indicate that the unknown phosphate-containing compound might be polyphosphate.  相似文献   

13.
Recently we reported the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococcus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system (J. Deutscher, FEMS Microbiol. Lett. 29:237-243, 1985). The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The Kms were found to be 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 mM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitive manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following [32P]PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, we isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.  相似文献   

14.
Streptococcus lactis K1 has the capacity to grow on many sugars, including sucrose and lactose, in the presence of high levels (greater than 500 mM) of 2-deoxy-D-glucose. Initially, growth of the organism was transiently halted by the addition of comparatively low concentrations (less than 0.5 mM) of the glucose analog to the culture. Inhibition was coincident with (i) rapid accumulation of 2-deoxy-D-glucose 6-phosphate (ca. 120 mM) and preferential utilization of phosphoenolpyruvate via the mannose:phosphotransferase system, (ii) depletion of phosphorylated glycolytic intermediates, and (iii) a 60% reduction in intracellular ATP concentration. During the 5- to 10-min period of bacteriostasis the intracellular concentration of 2-deoxy-D-glucose 6-phosphate rapidly declined, and the concentrations of glycolytic intermediates were restored to near-normal levels. When growth resumed, the cell doubling time (Td) and the steady-state levels of 2-deoxy-D-glucose 6-phosphate maintained by the cells were dependent upon the medium concentration of 2-deoxy-D-glucose. Resistance of S. lactis K1 to the potentially toxic analog was a consequence of negative regulation of the mannose:phosphotransferase system by two independent mechanisms. The first, short-term response occurred immediately after the initial "overshoot" accumulation of 2-deoxy-D-glucose 6-phosphate, and this mechanism reduced the activity (fine control) of the mannose:phosphotransferase system. The second, long-term mechanism resulted in repression of synthesis (coarse control) of enzyme IImannose. The two regulatory mechanisms reduced the rate of 2-deoxy-D-glucose translocation via the mannose:phosphotransferase system and minimized the activity of the phosphoenolpyruvate-dependent futile cycle of the glucose analog (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982). Phosphoenolpyruvate was thus conserved for transport of the growth sugar and for generation of ATP required for biosynthetic and work functions of the growing cell.  相似文献   

15.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

16.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

17.
Starved cells of Streptococcus lactis ML3 (grown previously on galactose, lactose, or maltose) accumulated methyl-beta-D-thiogalactopyranoside (TMG) by the lactose:phosphotransferase system. More than 98% of accumulated sugar was present as a phosphorylated derivative, TMG-6-phosphate (TMG-6P). When a phosphotransferase system sugar (glucose, mannose, 2-deoxyglucose, or lactose) was added to the medium simultaneously with TMG, the beta-galactoside was excluded from the cells. Galactose enhanced the accumulation of TMG-6P. Glucose, mannose, lactose, or maltose plus arginine, was added to a suspension of TMG-6P-loaded cells of S. lactis ML3, elicited rapid expulsion of intracellular solute. The material recovered in the medium was exclusively free TMG. Expulsion of galactoside required both entry and metabolism of an appropriate sugar, and intracellular dephosphorylation of TMG-6P preceded efflux of TMG. The rate of dephosphorylation of TMG-6P by permeabilized cells was increased two-to threefold by adenosine 5'-triphosphate but was strongly inhibited by fluoride. S. lactis ML3 (DGr) was derived from S. lactis ML3 by positive selection for resistance to 2-deoxy-D-glucose and was defective in the enzyme IIMan component of the glucose:phosphotransferase system. Neither glucose nor mannose excluded TMG from cells of S. lactic ML3 (DGr), and these two sugars failed to elicit TMG expulsion from preloaded cells of the mutant strain. Accumulation of TMG-6P by S. lactis ML3 can be regulation by two independent mechanisms whose activities promote exclusion or expulsion of galactoside from the cell.  相似文献   

18.
Streptococcus lactis strain DR1251 was capable of growth on lactose and galactose with generation times, at 30 degrees C, of 42 and 52 min, respectively. Phosphoenolpyruvate-dependent phosphotransferase activity for lactose and galactose was induced during growth on either substrate. This activity had an apparent K(m) of 5 x 10(-5) M for lactose and 2 x 10(-2) M for galactose. beta-d-Phosphogalactoside galactohydrolase activity was synthesized constitutively by these cells. Strain DR1251 lost the ability to grow on lactose at a high frequency when incubated at 37 degrees C with glucose as the growth substrate. Loss of ability to metabolize lactose was accompanied by the loss of a 32-megadalton plasmid, pDR(1), and Lac(-) isolates did not revert to a Lac(+) phenotype. Lac(-) strains were able to grow on galactose but with a longer generation time. Galactose-grown Lac(-) strains were deficient in beta-d-phosphogalactoside galactohydrolase activity and phosphoenolpyruvate phosphotransferase activity for both lactose and galactose. There was also a shift from a predominantly homolactic to a heterolactic fermentation and a fivefold increase in galactokinase activity, relative to the Lac(+) parent strain grown on galactose. These results suggest that S. lactis strain DR1251 metabolizes galactose primarily via the tagatose-6-phosphate pathway, using a lactose phosphoenolpyruvate phosphotransferase activity to transport this substrate into the cell. Lac(-) derivatives of strain DR1251, deficient in the lactose phosphoenolpyruvate phosphotransferase activity, appeared to utilize galactose via the Leloir pathway.  相似文献   

19.
Uncoupled enzyme IIGlc of the phosphoenolpyruvate (PEP): glucose phosphotransferase system (PTS) in Salmonella typhimurium is able to catalyze glucose transport in the absence of PEP-dependent phosphorylation. We have studied the energetics of glucose uptake catalyzed by this uncoupled enzyme IIGlc. The molar growth yields on glucose of two strains cultured anaerobically in glucose-limited chemostat-and batch cultures were compared. Strain PP 799 transported and phosphorylated glucose via an intact PTS, while strain PP 952 took up glucose exclusively via uncoupled enzyme IIGlc, followed by ATP-dependent phosphorylation by glucokinase. Thus the strains were isogenic except for the mode of uptake and phosphorylation of the growth substrate. PP 799 and PP 952 exhibited similar Y Glc values. Assuming equal Y ATP values for both strains this result indicated that there were no energetic demands for glucose uptake via uncoupled enzyme IIGlc.Abbreviations PTS phosphoenolpyruvate: carbohydrate phosphotransferase system - HPr histidine-containing phosphocarrier protein - GalP galactose permease  相似文献   

20.
Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号