首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron spin resonance spectroscopy has been used to demonstrate production of semiquinone-free radicals from the oxidation of the catechol estrogens 2- and 4-hydroxyestradiol and 2,6- and 4,6-dihydroxyestradiol. Radicals were generated either enzymatically (using horseradish peroxidase-H2O2 or tyrosinase-O2) or by autoxidation, and were detected as their complexes with spin-stabilizing metal ions (Zn2+ and/or Mg2+). In the peroxidase system, radicals are produced by one-electron oxidation of the catechol estrogen and their decay is by a second-order pathway, consistent with their disproportionation to quinone and catechol products. With tyrosinase-O2, radical generation occurs indirectly. Initial hydroxylation of phenolic estrogen (at either the 2- or 4-position) gives a catechol estrogen in situ; subsequent two-electron oxidation of the catechol to the quinone, followed by reverse disproportionation, leads to the formation of radicals. A competing mechanism for radical production involves autoxidation of the catechol. Results obtained from the estrogen systems have been compared with those from the model compound 5,6,7,8-tetrahydro-2-naphthol.  相似文献   

2.
Previous cell biological studies demonstrated that S100B protein enhances neurite extension of cortical neurons and stimulates proliferation of glial cells. Although these activities of the protein are ascribed to its disulfide-linked dimeric form, there have been no indications as to how the dimer is formed in vivo. We have found by an in vitro study that it is produced by copper-dependent oxidation of noncovalent S100B dimer. The disulfide-linked dimer markedly stimulated nitric oxide production in a microglial cell line, BV2. Interestingly, the disulfide-linked dimer formation was found to be prevented by ascorbic acid. The copper-dependent formation of the dimer may not happen in vivo under normal conditions; however, under pathological conditions where copper is likely to be released from tissues and catalyze autoxidation of ascorbic acid, the dimer formation may proceed, resulting in the stimulated production of nitric oxide that would induce toxic signaling pathways.  相似文献   

3.
Mass spectrometry, especially tandem mass spectrometry, has been widely used in the field of analytical sciences for handling biological and chemical samples. The technique resolves molecular and fragment ions based on the mass to charge ratio. Energy-resolved mass spectrometry (ERMS) further provides an activation energy-related factor in the dissociation reaction. Therefore, it is a very powerful technique that can discriminate isomeric compounds. Despite the power of ERMS, useful information cannot be obtained when an analyte contains structural isomers. Carbohydrates carry multiple chiral centers, thus oligomers of monosaccharides can form a vast number of structural isomers. We decided to use such species in our endeavors to establish a method of identifying the ‘purity’ of an analyte solely based on mass spectrometry. In the present paper, we describe a stage-discriminated spectral correlation of ERMS, which not only enables identification of the presence of contaminants in an analyte, but also provides information regarding the ‘purity’ of fragment ions.  相似文献   

4.
(-)-Epicatechin (EC) and (-)-epigallocatechin gallate (EGCG), two major tea flavan-3-ols, have received attention in food science and biomedicine because of their potent antioxidant properties. In plants, flavan-3-ols serve as proanthocyanidin (PA) building blocks, and although both monomeric flavan-3-ols and PAs show antioxidant activity in vitro, their antioxidant function in vivo remains unclear. In the present study, EC quinone (ECQ) and EGCG quinone (EGCGQ), the oxidation products of EC and EGCG, increased up to 100- and 30-fold, respectively, in tea plants exposed to 19 days of water deficit. Oxidation of EC and EGCG preceded PAs accumulation in leaves, which increased from 35 to 53 mg gDW(-1) after 26 days of water deficit. Aside from the role monomeric flavan-3-ols may play in PAs biosynthesis, formation of ECQ and EGCGQ strongly negatively correlated with the extent of lipid peroxidation in leaves, thus supporting a protective role for these compounds in drought-stressed plants. Besides demonstrating flavonoid accumulation in drought-stressed tea plants, we show for the first time that EC and EGCG are oxidized to their respective quinones in plants in vivo.  相似文献   

5.
Glucosamine (Gln), glucosamine polymers, and their catecholamine adducts were characterized using positive ion electrospray mass spectrometry (ESMS) and tandem mass spectrometry (ESMS-MS). N-acetyldopamine (NADA), a catecholamine found in many insect cuticles, was oxidized using mushroom tyrosinase, and the resulting quinone derivatives were reacted with Gln, (Gln)3, and polymeric glucosamine (chitosan). Adducts of glucosamine and its trisaccharide with NADA were readily identified as [M + H]+ ions in ESMS spectra, and ESMS-MS of selected ions confirmed the condensation of 1-3 NADA residues with Gln. In addition to Gln modification by the quinone derivatives of NADA, other spectra were consistent with the formation of adducts with N-acetylnoradrenaline and moieties formed by intramolecular cyclization following oxidation. The primary amine of glucosamine was involved in initial adduct formation, but the sites for subsequent additions of oxidized NADA to glucosamine, presumably via hydroxyl groups, could not be identified by ESMS alone. The ESMS spectra of chitosan films infused into the spectrometer following solubilization in acidic methanol/water produced spectra similar to that of (Gln)3 up to m/z 502. Ions of gradually decreasing intensity consistent with (Gln)x, where x = 4-8, were observed. Modification of chitosan films following incubation with NADA plus tyrosinase rendered the films insoluble in dilute acid, simulating the cross-linking process proposed to occur during insect cuticle sclerotization. Acid hydrolysates of the pupal stage of the mosquito Toxorhynchites amboinensis, using only two pupal exuviae for the hydrolyses, were infused into the mass spectrometer without preliminary chromatography. Eight amino acids, glucosamine, N-acetylglucosamine, catecholamines, and a variety of polymers incorporating these compound classes were identified.  相似文献   

6.
Selenite has been found to be an active catalyst for the oxidation of sulphhydryl compounds, such as glutathione (GSH). Considering the biological importance of GSH oxidation and the implication of sulphhydryl compounds in selenium poisoning and other biological activities, more information on selenite oxidation of GSH in enzyme-free conditions is desirable. Herein, we describe glutathione and sodium selenite simply mixed in aqueous solutions. The interaction products and transient intermediate are identified and characterized using electrospray ionization (ESI) tandem mass spectrometry. In the first step, GSH directly reacts to form diglutathione (GSSG) and unstable selenodiglutathione (GS-Se-SG). Then selenodiglutathione further reacted with remaining GSH to form diglutathione and elemental selenium, Se(0). As the amount of GSSG significantly increased or acidity of the solution increased, the redox potential of glutathione [E(0')(GSSG/2GSH) approximately -250 mV (NHE)] significantly shifted to the positive direction. This makes the GSSG react with elemental selenium formed in the solution, which can be demonstrated by another unstable intermediate ion identified at m/z 418 by mass spectrometry with the elemental composition of [GSS-Se](-). The reaction mechanism between GSH and sodium selenite has been proposed according to the ESI-MS, NMR and UV-vis spectrometric measurements.  相似文献   

7.
B Domon  C E Costello 《Biochemistry》1988,27(5):1534-1543
Glycosphingolipids and gangliosides have been investigated by using fast atom bombardment high-performance tandem mass spectrometry (FABMS/MS). Homologous compounds have been investigated in order to ascertain the fragmentation. Collision-induced dissociation spectra of the molecular species in the positive ion mode mainly afford information on the ceramide constitution (aglycon as a whole, N-acyl residue, and long-chain base), whereas negative ion spectra show fragments informative of the sugar sequence and the degree of branching of the carbohydrate. In the case of gangliosides carrying a complex oligosaccharide moiety, collision spectra of fragment ions have been performed in order to gain additional structural data. The advantage of tandem mass spectrometry over conventional fast atom bombardment mass spectrometry (FABMS) consists in the fact that collision spectra of the individual components from mixtures, as usually encountered with these kinds of samples, can be recorded. Furthermore, the exclusion of most of the interfering signals from the matrix allows the identification of pertinent fragments at low mass.  相似文献   

8.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   

9.
The behavior of benzo[a]pyrene (B[a]P) during peroxidation of phosphatidylcholine (PC) liposomes initiated by an azo compound was investigated to examine the mechanism of quinone formation from carcinogenic B[a]P mediated by nonenzymatic lipid peroxidation occurring in vivo. B[a]P had a retarding effect on the peroxidation of polyunsaturated fatty acid moiety of PC. The major oxidation products which accumulated in the peroxidized liposomes were B[a]P 1,6-, 3,6-, and 6,12-quinone. Antioxidants acting as scavengers of chain-propagating lipid peroxy radicals effectively prevented not only lipid peroxidation but also B[a]P oxidation in the liposomal suspension. PC hydroperoxides, the primary products of PC oxidation, did not react with B[a]P in the absence of the azo compound, indicating that lipid peroxy radicals, not lipid hydroperoxides, are responsible for the formation of these quinones. The experiments using 18O2 gas and 18O-labeled methyl linoleate hydroperoxides demonstrated that B[a]P quinones are formed by incorporating molecular oxygen and their origin is partly due to the lipid peroxy radical. The mechanism proposed for the formation of B[a]P quinones mediated by peroxidation of membrane lipids involves a direct attack of the lipid peroxy radical on B[a]P and subsequent autocatalytic oxidation. Weak carcinogenic and noncarcinogenic pentacyclic aromatic hydrocarbons showed little reactivity to the lipid peroxy radical in the liposomes. Thus, the facility of the peroxidative attack on B[a]P may be related to the powerful carcinogenic activity of this substance.  相似文献   

10.
Glutathione (GSH) is known to inhibit copper-catalyzed autoxidation of L-ascorbic acid (AA); in this study, AA was found to conversely inhibit copper-catalyzed autoxidation of GSH. To elucidate the mechanism of the mutual inhibition of the autoxidations of these two reducing substances in their coexistence, we have kinetically investigated these phenomena. The study of the former phenomenon revealed that GSH forms a 1:1 chelate with Cu+ and thereby prevents the autoxidation of AA. By the analysis of the latter phenomenon, it was postulated that the inhibition of GSH oxidation by AA is due to rapid reduction of thiyl radical of GSH by AA rather than competition of AA with GSH in the reduction of Cu2+. The effect of GSH on the formation of hydroxyl radical by the copper-catalyzed autoxidation of AA was also studied and it was found that the hydroxyl radical formation was delayed dose-dependently by GSH with time lags comparable to those of the oxidation of AA. Because there are several lines of evidence that redox-active copper ions are released from tissues under pathological conditions, it is possible that such copper ions coexist with AA and GSH in vivo, and in such a situation, GSH may exert an inhibitory effect on the hydroxyl radical formation caused by the autoxidation of AA.  相似文献   

11.
Glutathione (GSH) is known to inhibit copper-catalyzed autoxidation of L-ascorbic acid (AA); in this study, AA was found to conversely inhibit copper-catalyzed autoxidation of GSH. To elucidate the mechanism of the mutual inhibition of the autoxidations of these two reducing substances in their coexistence, we have kinetically investigated these phenomena. The study of the former phenomenon revealed that GSH forms a 1:1 chelate with Cu(+) and thereby prevents the autoxidation of AA. By the analysis of the latter phenomenon, it was postulated that the inhibition of GSH oxidation by AA is due to rapid reduction of thiyl radical of GSH by AA rather than competition of AA with GSH in the reduction of Cu(2+). The effect of GSH on the formation of hydroxyl radical by the copper-catalyzed autoxidation of AA was also studied and it was found that the hydroxyl radical formation was delayed dose-dependently by GSH with time lags comparable to those of the oxidation of AA. Because there are several lines of evidence that redox-active copper ions are released from tissues under pathological conditions, it is possible that such copper ions coexist with AA and GSH in vivo, and in such a situation, GSH may exert an inhibitory effect on the hydroxyl radical formation caused by the autoxidation of AA.  相似文献   

12.
The oxidation of eugenol (4-allyl-2-methoxyphenol) by horseradish peroxidase was studied. Following the initiation of the reaction with hydrogen peroxide, eugenol was oxidized via a one-electron pathway to a phenoxyl radical which subsequently formed a transient, yellow-colored intermediate which was identified as a quinone methide. The eugenol phenoxyl radical was detected using fast-flow electron spin resonance. The radicals and/or quinone methide further reacted to form an insoluble complex polymeric material. The stoichiometry of the disappearance of eugenol versus hydrogen peroxide was approximately 2:1. The addition of glutathione or ascorbate prevented the appearance of the quinone methide and also prevented the disappearance of the parent compound. In the presence of glutathione, a thiyl radical was detected, and increases in oxygen consumption and in the formation of oxidized glutathione were also observed. These results suggested that glutathione reacted with the eugenol phenoxyl radical and reduced it back to the parent compound. Glutathione also reacted directly with the quinone methide resulting in the formation of a eugenol-glutathione conjugate(s). Using 3H-labeled eugenol, extensive covalent binding to protein was observed. Finally, the oxidation products of eugenol/peroxidase were observed to be highly cytotoxic using isolated rat hepatocytes as target cells.  相似文献   

13.
Catechol and catecholamines have been assayed upon the microsomal NADPH and NADH oxidase activities. Epinephrine shows a catalytic effect on the NADPH oxidation characterized by a small lag. The two to threefold increase in rate can be suppressed by Superoxide dismutase if the enzyme is added before the reaction begins. The catalytic effect is ascribed to a quinone formed by two electron oxidation of epinephrine by the Superoxide ion. The quinone, which is not catalytically active in the NADH chain, appears to mediate electrons between the NADPH-cytochrome c reductase and oxygen. The four electron oxidation product adrenochrome is also active upon the NADPH chain but inactive upon the NADH chain.Epinephrine did not change the menadione-stimulated NADPH oxidase activity. Presumably, during this and the NADH oxidase activities, two electrons are simultaneously transferred to the oxygen molecule.Catechol and catecholamines doubled the rate of autoxidation of NADH in the presence of catalytic amounts of NADH-cytochrome b5 reductase and cytochrome b5, a result which suggests Superoxide ion formation in the autoxidation of the cytochrome.Epinephrine does not act upon the desaturation of endogenous substrate or upon endogenous lipid peroxidation.  相似文献   

14.
Ceruloplasmin (CP) is a major multicopper-containing plasma protein that is not only involved in iron metabolism through its ferroxidase activity but also functions as an antioxidant. However, physiological substrates for CP have not been fully identified nor has the role of CP been fully understood. The reaction of nitric oxide (NO) with CP was investigated in view of nitrosothiol (RS-NO) formation. First, formation of heavy metal- or CP-catalyzed RS-NO was examined with physiologically relevant concentrations of NO and various thiol compounds (RSH) such as glutathione (GSH). Among the various heavy metal ions and copper-containing enzymes and proteins examined, only copper ion (Cu(2+)) and CP showed potent RS-NO (S-nitrosoglutathione)-producing activity. Also, RS-NO-forming catalytic activity was evident for CP added exogenously to RAW264 cells expressing inducible NO synthase in culture, but this was not the case for copper ion. Similarly, CP produced endogenously by HepG2 cells showed potent RS-NO-forming activity in the cell culture. One-electron oxidation of NO appears to be operative for RS-NO production via electron transfer from type 1 copper to a cluster of types 2 and 3 copper in CP. Neurological disorders are associated with aceruloplasminemia; besides RS-NO, S-nitrosoglutathione particularly has been shown to have neuroprotective effect against oxidative stress induced by iron overload. Thus, we suggest that CP plays an important catalytic role in RS-NO formation, which may contribute to its potent antioxidant and cytoprotective activities in vivo in mammalian biological systems.  相似文献   

15.
The kinetic parameters of the redox transitions subsequent to the two-electron transfer implied in the glutathione (GSH) reductive addition to 2- and 6-hydroxymethyl-1,4-naphthoquinone bioalkylating agents were examined in terms of autoxidation, GSH consumption in the arylation reaction, oxidation of the thiol to glutathione disulfide (GSSG), and free radical formation detected by the spin-trapping electron spin resonance method. The position of the hydroxymethyl substituent in either the benzenoid or the quinonoid ring differentially influenced the initial rates of hydroquinone autoxidation as well as thiol oxidation. Thus, GSSG- and hydrogen peroxide formation during the GSH reductive addition to 6-hydroxymethyl-1,4-naphthoquinone proceeded at rates substantially higher than those observed with the 2-hydroxymethyl derivative. The distribution and concentration of molecular end products, however, was the same for both quinones, regardless of the position of the hydroxymethyl substituent. The [O2]consumed/[GSSG]formed ratio was above unity in both cases, thus indicating the occurrence of autoxidation reactions other than those involved during GSSG formation. EPR studies using the spin probe 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) suggested that the oxidation of GSH coupled to the above redox transitions involved the formation of radicals of differing structure, such as hydroxyl and thiyl radicals. These were identified as the corresponding DMPO adducts. The detection of either DMPO adduct depended on the concentration of GSH in the reaction mixture: the hydroxyl radical adduct of DMPO prevailed at low GSH concentrations, whereas the thiyl radical adduct of DMPO prevailed at high GSH concentrations. The production of the former adduct was sensitive to catalase, whereas that of the latter was sensitive to superoxide dismutase as well as to catalase. The relevance of free radical formation coupled to thiol oxidation is discussed in terms of the thermodynamic and kinetic properties of the reactions involved as well as in terms of potential implications in quinone cytotoxicity.  相似文献   

16.
Formation of dityrosine (DT) cross‐linkages in proteins is one of the most widely used markers of oxidative stress. Ribonuclease A (RNase A) has 6 Tyr residues and shows a characteristic DT fluorescence peak upon oxidation in addition to major changes in its secondary structure. DT formation can be prevented by using polyphenols (GA, ECG, and EGCG) which are known to have strong antioxidant activity. However, it has been observed that ECG and EGCG initiate protein oligomerization due to protein‐polyphenol cross‐linkages. To prevent the formation of such cross‐linkages we have used β‐cyclodextrin (β‐CD) to encapsulate the polyphenols and studied its antioxidant properties along with that of free polyphenols. The polyphenol/β‐cyclodextrin (β‐CD) inclusion complexes not only prevent DT formation but also reduce protein oligomerization. This may be attributed to the fact that the quinone forming rings of ECG and EGCG become encapsulated in the cavity of β‐CD and are no longer available for protein cross‐linking.  相似文献   

17.
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (?)-epigallocatechin gallate (EGCG), (?)-epigallocatechin (EGC), and (?)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O2?) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O2? oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O2? oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.  相似文献   

18.
Hypochlorous acid (HOCl) is a major product of activated neutrophils and may be important in antimicrobial activities of cells by oxidation or chlorination of susceptible amino acids. Three major peaks separated using C18 reverse phase-high-performance liquid chromatography RP-HPLC after incubation of leucine enkephalin (LeuEnk) with HOCl. Electrospray mass spectrometry showed masses of m/z 556.2, 590.2, and 624.4 corresponding to unmodified LeuEnk and peptides altered by addition of one or two chlorines (Cl). Formation of stable N-alpha-chloramines was indicated because the chlorinated peptides were readily reduced with the physiological reductants glutathione and ascorbic acid to LeuEnk (m/z 556.2) within 10 min. Sequence-specific ions observed in product ion spectra of single-charged monochlorinated and dichlorinated peptides were consistent with modification of the N-terminal amine. There was no evidence for chlorination of the Tyr aromatic ring in any spectra. Similar RP-HPLC profiles were obtained after oxidation of des-Tyr1-LeuEnk (GGFL) with the masses of the major products being m/z 393.3, 427.2, and 461.1. These were identified as unmodified GGFL, N-alpha-Cl-GGFL, and N-alpha-Cl2-GGFL based on comparison of tandem mass spectra. Oxidation of Met and formation of disulfide dimers was observed after incubation of either N-alpha-Cl-LeuEnk or N-alpha-Cl2-LeuEnk with a protein, indicating that both peptide N-alpha-chloramines were able to readily modify sulfur-containing amino acids within proteins. These data indicate initial formation of stable N-alpha-chorinated peptides after incubation with HOCl and suggest that N-alpha-chlorinated peptides may exist for some hours in the absence of physiological reducing agents or sulfur-containing amino acids.  相似文献   

19.
The rates of autoxidation of a number of pure naphthohydroquinones have been determined, and the effects of pH, superoxide dismutase (SOD) and of the parent naphthoquinone on the oxidation rates have been investigated. Most compounds were slowly oxidised in acid solution with the rates increasing with increasing pH, although 2-hydroxy-, 2-hydroxy-3-methyl- and 2-amino-1,4-naphthohydroquinone were rapidly oxidised at pH 5 and the rates of oxidation of these substances were comparatively unresponsive to changes in pH. At pH 7.4, autoxidation rates decreased in the order 2,3-dichloro-1,4-naphthohydroquinone > 5-hydroxy > 2-bromo > 2-hydroxy-3-methyl > 2-amino > 2-hydroxy > 2-methoxy > 2,3-dimethoxy > 2,3-dimethyl > 2-methyl > unsubstituted hydroquinone. The autoxidation rates of the alkyl, alkoxy, hydroxy and amino derivatives were decreased in the presence of SOD, but this enzyme had no effect on the rate of autoxidation of the 2,3-dichloro and 2-bromo derivatives while that of the 5-hydroxy derivative was increased. The rates of autoxidation of all compounds except the halogen derivatives and 5-hydroxy-1,4-naphthohydroquinone were increased by addition of the parent naphthoquinone, and quinone addition partially or completely overcame the inhibitory effect of SOD. There is evidence that the reduction of quinones to hydroquinones in vivo may lead either to detoxification or to activation. This may be due to differences in the rate or mechanism of autoxidation of the hydroquinones that are formed, and the data gained in this study will provide a framework for testing this possibility.  相似文献   

20.
Exposure of the skin to certain phenols or catechols such as 4-tert-butylphenol (TBP) and 4-tert-butylcatechol (TBC) may cause leukoderma. These substances are used in the polymer industry and numerous cases have been reported. Several theories of the mechanism for chemical leukoderma have been suggested. In the present study, TBP and TBC are shown to be oxidised by tyrosinase. The oxidation of TBC yields a quinone that is further investigated on its reactions with cysteine or glutathione (GSH). The products formed are isolated and identified by mass spectrometry and nuclear magnetic resonance as being 4-tert-butyl-6-S-cysteinylcatechol (cys-TBC) and 4-tert-butyl-6-S-glutathionylcatechol (GS-TBC). The reactive quinone is a strongly electrophilic substance that rapidly reacts with GSH. A depletion of the GSH defence system may give conditions where the quinone lives long enough to effect its toxic properties. The influence of the reactive tert-butylquinone on enzymatic activities is demonstrated by the inhibition of glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号