首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the objectives of metabonomics is to identify subtle changes in metabolite profiles between biological systems of different physiological or pathological states. Gas chromatography mass spectrometry (GC/MS) is a widely used analytical tool for metabolic profiling in various biofluids, such as urine and blood due to its high sensitivity, peak resolution and reproducibility. The availability of the GC/MS electron impact (EI) spectral library further facilitates the identification of diagnostic biomarkers and aids the subsequent mechanistic elucidation of the biological or pathological variations. With the advent of new comprehensive two dimensional GC (GCxGC) coupled to time-of-flight mass spectrometry (TOFMS), it is possible to detect more than 1200 compounds in a single analytical run. In this review, we discuss the applications of GC/MS in the metabolic profiling of urine and blood, and discuss its advances in methodologies and technologies.  相似文献   

2.
In recent years, lipidomics or lipid profiling, an extension of metabolomics where the lipid complement of a cell, tissue or organism is measured, has been the recipient of increasing attention as a research tool in a range of diverse disciplines including physiology, lipid biochemistry, clinical biomarker discovery and pathology. The advancement of the field has been driven by the development of analytical technologies, and in particular advances in liquid chromatography mass spectrometry and chemometric methods. In this review, we give an overview of the current methods with which lipid profiling is being performed. The benefits and shortcomings of mass spectrometry both in the presence and absence of chromatographic separation techniques such as liquid-, gas- and thin layer chromatography are explored. Alone these techniques have their limitations but through a combination many of the disadvantages may be overcome providing a valuable analytical tool for a variety of disease processes.  相似文献   

3.
Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.  相似文献   

4.
Electrospray ionization mass spectrometry combined with high efficiency capillary liquid chromatography provides high sensitivity and broad dynamic range measurements for the characterization of biological macromolecules in complex matrices, and is an increasingly powerful analytical tool for systems biology research.  相似文献   

5.
Deamidation of asparaginyl residues is a common posttranslational modification in proteins and has been studied extensively because of its important biological effects, such as those on enzymatic activity, protein folding, and proteolytic degradation. However, characterization of the sites of deamidation of a protein has been a difficult analytical problem. In this study, mass spectrometry has been used as an analytical tool to characterize the deamidation of barstar, an RNAse inhibitor. Upon incubation of the protein at alkaline pH for 5 h, intact mass analysis of barstar, using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QToF MS), indicated an increase in the mass of +2 Da, suggesting possible deamidation of the protein. The sites of deamidation have been identified using the conventional bottom-up approach using a capillary liquid chromatography connected on line to an ESI QToF mass spectrometer and top down approach by direct infusion of the intact protein and fragmenting inside MS. These chemical modifications are shown to lead to stabilization of an unfolding intermediate, which can be observed in equilibrium unfolding studies.  相似文献   

6.
The effectiveness of proteome-wide protein identification and quantitative expression profiling is dependent on the ability of the analytical methodologies employed to routinely obtain information on low-abundance proteins, as these are frequently of great biological importance. Two-dimensional gel electrophoresis, the traditional method for proteome analysis, has proven to be biased toward highly expressed proteins. Recently, two-dimensional chromatography of the complex peptide mixtures generated by the digestion of unseparated protein samples has been introduced for the identification of their components, and isotope-coded affinity tags (ICAT) have been introduced to allow for accurate quantification of the components of protein mixtures by mass spectrometry. Here, we demonstrate that the combination of isotope coded affinity protein tags and multidimensional chromatography/mass spectrometry of tryptic peptide mixtures is capable of detecting and quantifying proteins of low abundance in complex samples.  相似文献   

7.
Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies-secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption/ionization mass spectrometry (MALDI MS)-are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enables new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling.  相似文献   

8.
Four analytical protocols for the extraction and preconcentration of organic residues in natural or purified drinking water were investigated and compared: closed loop stripping analysis; simultaneous extraction—distillation; purge and trap analysis; continuous liquid—liquid extraction. Organic extracts were submitted to a variety of separation and identification techniques. Volatiles were determined by conventional capillary column gas chromatography with tandem mass spectrometry, using triple-stage quadrupole instruments. Non-volatile and thermally labile molecules were investigated by several different techniques (high-temperature gas chromatography, capillary column supercritical fluid chromatography, pyrolysis gas chromatography—mass spectrometry, thermospray liquid chromatography with tandem mass spectrometry and conventional fast-atom bombardment with tandem mass spectrometry). Several samples recently examined in the laboratory provide examples of this multitechnique approach for a more complete knowledge of the organic carbon distribution in water-dissolved organic matter, taking into account organic substances with widely different volatilities, polarities and thermal stabilities.  相似文献   

9.
Analytical methods to determine phytoestrogenic compounds   总被引:1,自引:0,他引:1  
The analytical methods for the determination of phytoestrogenic compounds in edible plants, plant products and biological matrices are reviewed. The detection, qualitative and quantitative methods based on different chromatographic separations of gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) coupled with various detections by ultraviolet absorption (UV), electrochemical detection (ED), fluorescence detection, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), as well as non-chromatographic immunoassay are each extensively examined and compared. An overview on phytoestrogen chemistry, bioactivities and health effects, plant precursors, metabolism and sample preparation is also presented.  相似文献   

10.
A sensitive and reliable analytical procedure has been established for the detection of theophylline (TH), theobromine (TB) and caffeine (CA) in human plasma and urine by gradient capillary high-performance liquid chromatography (HPLC)-frit-fast atom bombardment mass spectrometry (FAB-MS) (LC-frit-FAB-MS). Two capillary columns and a column-switching valve were used in this LC system to allow all of the sample injected to be introduced into the MS system. 7-Ethyltheophylline was used as the internal standard (I.S.). The xanthines in the specimen were extracted with an Extrelut column. The lowest detected amount was ca. 5 ng/ml using this method.  相似文献   

11.
Measurements of low molecular weight metabolites have been increasingly incorporated in the characterization of cellular physiology, qualitative studies in functional genomics, and stress response determination. The application of cutting edge analytical technologies to the measurement of metabolites and the changes in metabolite concentrations under defined conditions have helped illuminate the effects of perturbations in pathways of interest, such as the tricarboxylic acid cycle, as well as unbiased characterizations of microbial stress responses as a whole. Owing to the complexity of microbial metabolite extracts and the large number of metabolites therein, advanced and high-throughput separation techniques in gas chromatography, liquid chromatography, and capillary electrophoresis have been coupled to mass spectrometry - usually high-resolution mass spectrometry, but not exclusively - to make these measurements.  相似文献   

12.
The presence of numerous proteomics data and their results in literature reveal the importance and influence of proteins and peptides on human cell cycle. For instance, the proteomic profiling of biological samples, such as serum, plasma or cells, and their organelles, carried out by surface-enhanced laser desorption/ionization mass spectrometry, has led to the discovery of numerous key proteins involved in many biological disease processes. However, questions still remain regarding the reproducibility, bioinformatic artifacts and cross-validations of such experimental set-ups. The authors have developed a material-based approach, termed material-enhanced laser desorption/ionization mass spectrometry (MELDI-MS), to facilitate and improve the robustness of large-scale proteomic experiments. MELDI-MS includes a fully automated protein-profiling platform, from sample preparation and analysis to data processing involving state-of-the-art methods, which can be further improved. Multiplexed protein pattern analysis, based on material morphology, physical characteristics and chemical functionalities provides a multitude of protein patterns and allows prostate cancer samples to be distinguished from non-prostate cancer samples. Furthermore, MELDI-MS enables not only the analysis of protein signatures, but also the identification of potential discriminating peaks via capillary liquid chromatography mass spectrometry. The optimized MELDI approach offers a complete proteomics platform with improved sensitivity, selectivity and short sample preparation times.  相似文献   

13.
The development of electrospray ionization mass spectrometry has provided the foundation for the development of strategies to identify and quantify complex lipids from unfractionated extracts of small biological samples. In the 1990s, the feasibility of detailed lipid profiling was demonstrated; in the past two years, analytical strategies have been extended to include classes of lipids that are unique to plants. High-throughput lipid profiling by electrospray ionization tandem mass spectrometry, in combination with forward- or reverse-genetics approaches, has recently been utilized to identify lipid metabolic pathways that are involved in plant development and stress responses, to specify the roles of particular genes and enzymes in plant responses to environmental cues, to determine the lipid species that serve as the substrates and products of specific enzymes, and to identify lipid-metabolizing enzymes that are involved in varied plant processes.  相似文献   

14.
The presence of numerous proteomics data and their results in literature reveal the importance and influence of proteins and peptides on human cell cycle. For instance, the proteomic profiling of biological samples, such as serum, plasma or cells, and their organelles, carried out by surface-enhanced laser desorption/ionization mass spectrometry, has led to the discovery of numerous key proteins involved in many biological disease processes. However, questions still remain regarding the reproducibility, bioinformatic artifacts and cross-validations of such experimental set-ups. The authors have developed a material-based approach, termed material-enhanced laser desorption/ionization mass spectrometry (MELDI-MS), to facilitate and improve the robustness of large-scale proteomic experiments. MELDI-MS includes a fully automated protein-profiling platform, from sample preparation and analysis to data processing involving state-of-the-art methods, which can be further improved. Multiplexed protein pattern analysis, based on material morphology, physical characteristics and chemical functionalities provides a multitude of protein patterns and allows prostate cancer samples to be distinguished from non-prostate cancer samples. Furthermore, MELDI-MS enables not only the analysis of protein signatures, but also the identification of potential discriminating peaks via capillary liquid chromatography mass spectrometry. The optimized MELDI approach offers a complete proteomics platform with improved sensitivity, selectivity and short sample preparation times.  相似文献   

15.
A procedure is described for the extraction of diethylstilbestrol (DES) from animal tissue for quantitative capillary gas chromatography/mass spectrometry (GC/MS). The procedure is based upon use of a strong anion exchange polystyrene divinylbenzene resin for sample purification. The recovery of DES from the resin clean up was 88% in the high parts per trillion (ppt) range. Criteria for identification of DES using selected ion monitoring (SIM) GC/MS are presented. Liquid chromatography/mass spectrometry (LC/MS) was used to investigate altered DES cis/trans ratios observed in biological extracts.  相似文献   

16.
Hydroxyl radical in living systems and its separation methods   总被引:11,自引:0,他引:11  
It has recently been shown that hydroxyl radicals are generated under physiological and pathological conditions and that they seem to be closely linked to various models of pathology putatively implying oxidative stress. It is now recognized that the hydroxyl radical is well-regulated to help maintain homeostasis on the cellular level in normal, healthy tissues. Conversely, it is also known that virtually every disease state involves free radicals, particularly the most reactive hydroxyl radical. However, when hydroxyl radicals are generated in excess or the cellular antioxidant defense is deficient, they can stimulate free radical chain reactions by interacting with proteins, lipids, and nucleic acids causing cellular damage and even diseases. Therefore, a confident analytical approach is needed to ascertain the importance of hydroxyl radicals in biological systems. In this paper, we provide information on hydroxyl radical trapping and detection methods, including liquid chromatography with electrochemical detection and mass spectrometry, gas chromatography with mass spectrometry, capillary electrophoresis, electron spin resonance and chemiluminescence. In addition, the relationships between diseases and the hydroxyl radical in living systems, as well as novel separation methods for the hydroxyl radical are discussed in this paper.  相似文献   

17.
Differential polypeptide display: the search for the elusive target   总被引:3,自引:0,他引:3  
Proteomics, as a tool to identify proteins in biological samples, is gaining rapidly importance in the postgenomic era. Here we discuss the current and potential role of different techniques in the field of proteomics such as two-dimensional gel electrophoresis off-line coupled to MALDI-MS (2D-PAGE-MALDI-MS), high performance liquid chromatography mass spectrometry (HPLC-MS), surface enhanced laser desorption/ionization mass spectrometry (SELDI-MS) and a newly developed technique, capillary electrophoresis mass spectrometry (CE-MS). The developments of the last years are presented discussed.  相似文献   

18.
生物分析是生命科学研究中的重要环节,分析仪器的小型化是提高生物分析灵敏度、速度、通量和降低成本的有效途径之一.微流控技术能够方便地操纵微量样品,具有集成度高、样品耗量小、污染少等诸多其他常量流控技术难以具备的优点,适用于进行多通道样品处理和高通量分析.除广泛采用的光学和电化学检测手段外,质谱也被用作这些微流控器件的检测器,并逐渐形成了微流控器件-质谱联用技术专门研究领域,进一步促进了自动化程度好、灵敏度高、特异性强的高通量生物分析方法的迅速发展.在大量调研国内外文献的基础上,对微流控器件-质谱联用领域的研究背景和现状进行了综述,不但介绍了微流控器件的制造技术还着重介绍了微流控器件-质谱联用技术在蛋白质组学等生物质谱分析方面的应用和新近进展,评述了可能的发展趋势.  相似文献   

19.
The objective of this study was to determine if liquid chromatography mass spectrometry (LC/MS) data of tryptic digests of proteins can be used for quantitation. In theory, the peak area of peptides should correlate to their concentration; hence, the peak areas of peptides from one protein should correlate to the concentration of that particular protein. To evaluate this hypothesis, different amounts of tryptic digests of myoglobin were analyzed by LC/MS in a wide range between 10 fmol and 100 pmol. The results show that the peak areas from liquid chromatography mass spectrometry correlate linearly to the concentration of the protein (r2 = 0.991). The method was further evaluated by adding two different concentrations of horse myoglobin to human serum. The results confirm that the quantitation method can also be used for quantitative profiling of proteins in complex mixtures such as human sera. Expected and calculated protein ratios differ by no more than 16%. We describe a new method combining protein identification with accurate profiling of individual proteins. This approach should provide a widely applicable means to compare global protein expression in biological samples.  相似文献   

20.
The need for methods to identify disease biomarkers is underscored by the survival-rate of patients diagnosed at early stages of cancer progression. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) is a novel approach to biomarker discovery that combines two powerful techniques: chromatography and mass spectrometry. One of the key features of SELDI-TOF MS is its ability to provide a rapid protein expression profile from a variety of biological and clinical samples. It has been used for biomarker identification as well as the study of protein-protein, and protein-DNA interaction. The versatility of SELDI-TOF MS has allowed its use in projects ranging from the identification of potential diagnostic markers for prostate, bladder, breast, and ovarian cancers and Alzheimer's disease, to the study of biomolecular interactions and the characterization of posttranslational modifications. In this minireview we discuss the application of SELDI-TOF MS to protein biomarker discovery and profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号