首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paracoccus pantotrophus cytochrome cd(1) is a physiological nitrite reductase and an in vitro hydroxylamine reductase. The oxidised "as isolated" form of the enzyme has bis-histidinyl coordinated c-heme and upon reduction its coordination changes to histidine/methionine. Following treatment of reduced enzyme with hydroxylamine, a novel, oxidised, conformer of the enzyme is obtained. We have devised protocols for freeze-quench near-ir-MCD spectroscopy that have allowed us to establish unequivocally the c-heme coordination of this species as His/Met. Thus it is shown that the catalytically competent, hydroxylamine reoxidised, form of P. pantotrophus cytochrome cd(1) has different axial ligands to the c-heme than "as isolated" enzyme.  相似文献   

2.
Paracoccus pantotrophus cytochrome cd(1) is an enzyme of bacterial respiration, capable of using nitrite in vivo and also hydroxylamine and oxygen in vitro as electron acceptors. We present a comprehensive analysis of the steady state kinetic properties of the enzyme with each electron acceptor and three electron donors, pseudoazurin and cytochrome c(550), both physiological, and the non-physiological horse heart cytochrome c. At pH 5.8, optimal for nitrite reduction, the enzyme has a turnover number up to 121 s(-1) per d(1) heme, significantly higher than previously observed for any cytochrome cd(1). Pre-activation of the enzyme via reduction is necessary to establish full catalytic competence with any of the electron donor proteins. There is no significant kinetic distinction between the alternative physiological electron donors in any respect, providing support for the concept of pseudospecificity, in which proteins with substantially different tertiary structures can transfer electrons to the same acceptor. A low level hydroxylamine disproportionase activity that may be an intrinsic property of cytochromes c is also reported. Important implications for the enzymology of P. pantotrophus cytochrome cd(1) are discussed and proposals are made about the mechanism of reduction of nitrite, based on new observations placed in the context of recent rapid reaction studies.  相似文献   

3.
Tyr25 is a ligand to the active site d1 heme in as isolated, oxidized cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. This form of the enzyme requires reductive activation, a process that involves not only displacement of Tyr25 from the d1 heme but also switching of the ligands at the c heme from bis-histidinyl to His/Met. A Y25S variant retains this bis-histidinyl coordination in the crystal of the oxidized state that has sulfate bound to the d1 heme iron. This Y25S form of the enzyme does not require reductive activation, an observation previously interpreted as meaning that the presence of the phenolate oxygen of Tyr25 is the critical determinant of the requirement for activation. This interpretation now needs re-evaluation because, unexpectedly, the oxidized as prepared Y25S protein, unlike the wild type, has different heme iron ligands in solution at room temperature, as judged by magnetic circular dichroism and electron spin resonance spectroscopies, than in the crystal. In addition, the binding of nitrite and cyanide to oxidized Y25S cytochrome cd1 is markedly different from the wild type enzyme, thus providing insight into the affinity of the oxidized d1 heme ring for anions in the absence of the steric barrier presented by Tyr25.  相似文献   

4.
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.  相似文献   

5.
Cytochrome cd(1) is a respiratory enzyme that catalyzes the physiological one-electron reduction of nitrite to nitric oxide. The enzyme is a dimer, each monomer containing one c-type cytochrome center and one active site d(1) heme. We present stopped-flow Fourier transform infrared data showing the formation of a stable ferric heme d(1)-NO complex (formally d(1)Fe(II)-NO(+)) as a product of the reaction between fully reduced Paracoccus pantotrophus cytochrome cd(1) and nitrite, in the absence of excess reductant. The Fe-(14)NO nu(NO) stretching mode is observed at 1913 cm(-1) with the corresponding Fe-(15)NO band at 1876 cm(-1). This d(1) heme-NO complex is still readily observed after 15 min. EPR and visible absorption spectroscopic data show that within 4 ms of the initiation of the reaction, nitrite is reduced at the d(1) heme, and a cFe(III) d(1)Fe(II)-NO complex is formed. Over the next 100 ms there is an electron redistribution within the enzyme to give a mixed species, 55% cFe(III) d(1)Fe(II)-NO and 45% cFe(II) d(1)Fe(II)-NO(+). No kinetically competent release of NO could be detected, indicating that at least one additional factor is required for product release by the enzyme. Implications for the mechanism of P. pantotrophus cytochrome cd(1) are discussed.  相似文献   

6.
7.
The heme ligation in the isolated c domain of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase has been characterized in both oxidation states in solution by NMR spectroscopy. In the reduced form, the heme ligands are His69-Met106, and the tertiary structure around the c heme is similar to that found in reduced crystals of intact cytochrome cd1 nitrite reductase. In the oxidized state, however, the structure of the isolated c domain is different from the structure seen in oxidized crystals of intact cytochrome cd1, where the c heme ligands are His69-His17. An equilibrium mixture of heme ligands is present in isolated oxidized c domain. Two-dimensional exchange NMR spectroscopy shows that the dominant species has His69-Met106 ligation, similar to reduced c domains. This form is in equilibrium with a high-spin form in which Met106 has left the heme iron. Melting studies show that the midpoint of unfolding of the isolated c domain is 320.9 +/- 1.2 K in the oxidized and 357.7 +/- 0.6 K in the reduced form. The thermally denatured forms are high-spin in both oxidation states. The results reveal how redox changes modulate conformational plasticity around the c heme and show the first key steps in the mechanism that lead to ligand switching in the holoenzyme. This process is not solely a function of the properties of the c domain. The role of the d1 heme in guiding His17 to the c heme in the oxidized holoenzyme is discussed.  相似文献   

8.
Intramolecular electron transfer over 12 A from heme c to heme d(1) was investigated in cytochrome cd(1) nitrite reductase from Pseudomonas aeruginosa, following reduction of the c heme by pulse radiolysis. The rate constant for the transfer is relatively slow, k = 3 s(-1). The present observations contrast with a corresponding rate of electron transfer, 1.4 x 10(3) s(-1), measured for cytochrome cd(1) from Paracoccus pantotrophus, though the relative positions of the two heme groups are the same in both enzymes. The rate of intramolecular electron transfer within the enzyme from P. aeruginosa was accelerated 10(4)-fold (1.4 x 10(4) s(-1)) by the binding of cyanide to the d(1) heme. A coordination change at the d(1) heme upon its reduction is suggested to be a major factor in determining the slow rate of electron transfer in the P. aeruginosa enzyme in the absence of cyanide.  相似文献   

9.
Cytochrome cd1 nitrite reductase (cd1) from Paracoccus pantotrophus is a respiratory enzyme capable of using nitrite, hydroxylamine and oxygen as electron accepting substrates. Structural studies have shown that when the enzyme is reduced there is a change in the axial ligation of both hemes, which has been proposed to form part of the catalytic cycle. Here we report the use of a physiological electron donor, pseudoazurin, to investigate the relationship between heme ligation and catalysis. A combination of visible absorption and electron paramagnetic resonance spectroscopies reveals the formation of a catalytically competent state of oxidized cd1 with 'switched' axial ligands immediately after complete reoxidation of reduced cd1 with hydroxylamine. This activated conformer returns over 20 min at 25 degrees C to the state previously observed for oxidized 'as isolated' cd1, which is catalytically inactive towards the same substrates.  相似文献   

10.
Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.  相似文献   

11.
The 1.4-A crystal structure of the oxidized state of a Y25S variant of cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is described. It shows that loss of Tyr(25), a ligand via its hydroxy group to the iron of the d(1) heme in the oxidized (as prepared) wild-type enzyme, does not result in a switch at the c heme of the unusual bishistidinyl coordination to the histidine/methionine coordination seen in other conformations of the enzyme. The Ser(25) side chain is seen in two positions in the d(1) heme pocket with relative occupancies of approximately 7:3, but in neither case is the hydroxy group bound to the iron atom; instead, a sulfate ion from the crystallization solution is bound between the Ser(25) side chain and the heme iron. Unlike the wild-type enzyme, the Y25S mutant is active as a reductase toward nitrite, oxygen, and hydroxylamine without a reductive activation step. It is concluded that Tyr(25) is not essential for catalysis of reduction of any substrate, but that the requirement for activation by reduction of the wild-type enzyme is related to a requirement to drive the dissociation of this residue from the active site. The Y25S protein retains the d(1) heme less well than the wild-type protein, suggesting that the tyrosine residue has a role in stabilizing the binding of this cofactor.  相似文献   

12.
Bacterial cytochrome c peroxidases contain an electron transferring (E) heme domain and a peroxidatic (P) heme domain. All but one of these enzymes are isolated in an inactive oxidized state and require reduction of the E heme by a small redox donor protein in order to activate the P heme. Here we present the structures of the inactive oxidized and active mixed valence enzyme from Paracoccus pantotrophus. Chain flexibility in the former, as expressed by the crystallographic temperature factors, is strikingly distributed in certain loop regions, and these coincide with the regions of conformational change that occur in forming the active mixed valence enzyme. On the basis of these changes, we postulate a series of events that occur to link the trigger of the electron entering the E heme from either pseudoazurin or cytochrome c(550) and the dissociation of a coordinating histidine at the P heme, which allows substrate access.  相似文献   

13.
Cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is a dimer; within each monomer there is a largely alpha-helical domain that contains the c-type cytochrome centre. The structure of this domain changes significantly upon reduction of the heme iron, for which the ligands change from His17/His69 to Met106/His69. Overproduction, using an improved Escherichia coli expression system, of this c-type cytochrome domain as an independent monomer is reported here. The properties of the independent domain are compared with those when it is part of dimeric holo or semi-apo cytochrome cd(1).  相似文献   

14.
Bali S  Warren MJ  Ferguson SJ 《The FEBS journal》2010,277(23):4944-4955
The cytochrome cd? nitrite reductase from Paracoccus pantotrophus catalyses the one electron reduction of nitrite to nitric oxide using two heme cofactors. The site of nitrite reduction is the d? heme, which is synthesized under anaerobic conditions by using nirECFD-LGHJN gene products. In vivo studies with an unmarked deletion strain, ΔnirF, showed that this gene is essential for cd? assembly and consequently for denitrification, which was restored when the ΔnirF strain was complemented with wild-type, plasmid-borne, nirF. Removal of a signal sequence and deletion of a conserved N-terminal Gly-rich motif from the NirF coded on a plasmid resulted in loss of in vivo NirF activity. We demonstrate here that the product of the nirF gene is a periplasmic protein and, hence, must be involved in a late stage of the cofactor biosynthesis. In vitro studies with purified NirF established that it could bind d? heme. It is concluded that His41 of NirF, which aligns with His200 of the d? heme domain of cd?, is essential both for this binding and for the production of d? heme; replacement of His41 by Ala, Cys, Lys and Met all gave nonfunctional proteins. Potential functions of NirF are discussed.  相似文献   

15.
Cytochrome cd(1) (cd(1)NIR) from Paracoccus pantotrophus, which is both a nitrite reductase and an oxidase, was reduced by ascorbate plus hexaamineruthenium(III) chloride on a relatively slow time scale (hours required for complete reduction). Visible absorption spectroscopy showed that mixing of ascorbate-reduced enzyme with oxygen at pH = 6.0 resulted in the rapid oxidation of both types of heme center in the enzyme with a linear dependence on oxygen concentration. Subsequent changes on a longer time scale reflected the formation and decay of partially reduced oxygen species bound to the d(1) heme iron. Parallel freeze-quench experiments allowed the X-band electron paramagnetic resonance (EPR) spectrum of the enzyme to be recorded at various times after mixing with oxygen. On the same millisecond time scale that simultaneous oxidation of both heme centers was seen in the optical experiments, two new EPR signals were observed. Both of these are assigned to oxidized heme c and resemble signals from the cytochrome c domain of a "semi-apo" form of the enzyme for which histidine/methionine coordination was demonstrated spectroscopically. These observations suggests that structural changes take around the heme c center that lead to either histidine/methionine axial ligation or a different stereochemistry of bis-histidine axial ligation than that found in the as prepared enzyme. At this stage in the reaction no EPR signal could be ascribed to Fe(III) d(1) heme. Rather, a radical species, which is tentatively assigned to an amino acid radical proximal to the d(1) heme iron in the Fe(IV)-oxo state, was seen. The kinetics of decay of this radical species match the generation of a new form of the Fe(III) d(1) heme, probably representing an OH(-)-bound species. This sequence of events is interpreted in terms of a concerted two-electron reduction of oxygen to bound peroxide, which is immediately cleaved to yield water and an Fe(IV)-oxo species plus the radical. Two electrons from ascorbate are subsequently transferred to the d(1) heme active site via heme c to reduce both the radical and the Fe(IV)-oxo species to Fe(III)-OH(-) for completion of a catalytic cycle.  相似文献   

16.
Each monomer of the dimeric cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus contains two hemes: one c-type center and one noncovalently bound d(1) center. Potentiometric analysis at 20 degrees C shows substantial cooperativity between the two redox centers in terms of their joint co-reduction (or co-oxidation) at a single apparent potential with an n value of 1.4 +/- 0.1. Reproducible hysteresis is demonstrated in the redox titrations. In a reductive titration both centers titrate with an apparent midpoint potential of +60 +/- 5 mV while in the oxidative titration the apparent potential is +210 +/- 5 mV. However, at 40 degrees C the reductive and oxidative titrations are shifted such that they almost superimpose; each has n = 2. A kinetically gated process that can be correlated with oxidation/reduction-dependent ligand changes at the two heme centers, previously seen by crystallography, is implicated. In contrast, a semi-apoenzyme, lacking the d(1) heme, exhibits a reversible redox titration with a midpoint potential of +242 +/- 5 mV (n = 1). The data with the holoenzyme show how redox changes can themselves generate a gating of the type that is minimally required to account for redox-linked proton pumping by membrane-bound cytochromes.  相似文献   

17.
We present a 1.59-A resolution crystal structure of reduced Paracoccus pantotrophus cytochrome cd(1) with cyanide bound to the d(1) heme and His/Met coordination of the c heme. Fe-C-N bond angles are 146 degrees for the A subunit and 164 degrees for the B subunit of the dimer. The nitrogen atom of bound cyanide is within hydrogen bonding distance of His(345) and His(388) and either a water molecule in subunit A or Tyr(25) in subunit B. The ferrous heme-cyanide complex is unusually stable (K(d) approximately 10(-6) m); we propose that this reflects both the design of the specialized d(1) heme ring and a general feature of anion reductases with active site heme. Oxidation of crystals of reduced, cyanide-bound, cytochrome cd(1) results in loss of cyanide and return to the native structure with Tyr(25) as a ligand to the d(1) heme iron and switching to His/His coordination at the c-type heme. No reason for unusually weak binding of cyanide to the ferric state can be identified; rather it is argued that the protein is designed such that a chelate-based effect drives displacement by tyrosine of cyanide or a weaker ligand, like reaction product nitric oxide, from the ferric d(1) heme.  相似文献   

18.
The structural changes in the heme macrocycle and substituents caused by binding of Ca(2+) to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca(2+)-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca(2+) or Mg(2+). This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca(2+) binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca(2+) binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.  相似文献   

19.
The sulfur-oxidizing enzyme system (Sox) of the chemotroph Paracoccus pantotrophus is composed of several proteins, which together oxidize hydrogen sulfide, sulfur, thiosulfate or sulfite and transfers the gained electrons to the respiratory chain. The hetero-dimeric cytochrome c complex SoxXA functions as heme enzyme and links covalently the sulfur substrate to the thiol of the cysteine-138 residue of the SoxY protein of the SoxYZ complex. Here, we report the crystal structure of the c-type cytochrome complex SoxXA. The structure could be solved by molecular replacement and refined to a resolution of 1.9A identifying the axial heme-iron coordination involving an unusual Cys-251 thiolate of heme2. Distance measurements between the three heme groups provide deeper insight into the electron transport inside SoxXA and merge in a better understanding of the initial step of the aerobic sulfur oxidation process in chemotrophic bacteria.  相似文献   

20.
Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号