首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of the hemolysin genes, tdh and trh, in Vibrio parahaemolyticus strains isolated from environmental samples collected from various exported seafood products comprising of fishes and shellfish (Mytilus edulis and Crassostrea gigas) or seawater, was studied. Eight strains were confirmed as V. parahaemolyticus by toxR -based polymerase chain reaction and only one strain out of these 8 strains was positive for tdh and trh genes. Toxigenic V. parahaemolyticus isolates are present in Tunisian coastal areas and they may also be present in Tunisian exported seafood products.  相似文献   

2.
The food-borne pathogen Vibrio parahaemolyticus has been reported as being present in New Zealand (NZ) seawaters, but there have been no reported outbreaks of food-borne infection from commercially grown NZ seafood. Our study determined the current incidence of V. parahaemolyticus in NZ oysters and Greenshell mussels and the prevalence of V. parahaemolyticus tdh and trh strains. Pacific (235) and dredge (21) oyster samples and mussel samples (55) were obtained from commercial shellfish-growing areas between December 2009 and June 2012. Total V. parahaemolyticus numbers and the presence of pathogenic genes tdh and trh were determined using the FDA most-probable-number (MPN) method and confirmed using PCR analysis. In samples from the North Island of NZ, V. parahaemolyticus was detected in 81% of Pacific oysters and 34% of mussel samples, while the numbers of V. parahaemolyticus tdh and trh strains were low, with just 3/215 Pacific oyster samples carrying the tdh gene. V. parahaemolyticus organisms carrying tdh and trh were not detected in South Island samples, and V. parahaemolyticus was detected in just 1/21 dredge oyster and 2/16 mussel samples. Numbers of V. parahaemolyticus organisms increased when seawater temperatures were high, the season when most commercial shellfish-growing areas are not harvested. The numbers of V. parahaemolyticus organisms in samples exceeded 1,000 MPN/g only when the seawater temperatures exceeded 19°C, so this environmental parameter could be used as a trigger warning of potential hazard. There is some evidence that the total V. parahaemolyticus numbers increased compared with those reported from a previous 1981 to 1984 study, but the analytical methods differed significantly.  相似文献   

3.
Vibrio parahaemolyticus is a seafood-borne halophilic pathogen that causes acute gastroenteritis in humans. During the course of an investigation on the incidence of V. parahaemolyticus in sewage water samples of Calcutta, India, we isolated eight (26.7%) strains of V. parahaemolyticus from 30 samples. Among these strains, five (62.5%) carried the thermostable direct hemolysin (tdh) gene, a major virulence marker of V. parahaemolyticus. Two strains belonged to serovar O5:K3 and the remaining three to O5:KUT, which is common among clinical strains of V. parahaemolyticus isolated from hospitalized patients of Calcutta with acute diarrhoea. The tdh positive sewage strains of V. parahaemolyticus were compared by randomly amplified polymorphic DNA (RAPD)-PCR and pulsed-field gel electrophoresis (PFGE) with strains of similar serovars selected from our culture collection to determine the genetic relatedness. Our results showed that except for sharing the similar serovar, sewage and clinical strains of V. parahaemolyticus were genetically different. In addition, toxRS-targeted group-specific (GS) PCR and open reading frame 8 (ORF-8) PCR showed that the sewage strains did not belong to the pandemic genotype. Since the sewage in Calcutta is directly used for cultivation of vegetables and for pisciculture, the presence of tdh positive V. parahaemolyticus in the sewage highlights the need for constant monitoring of the environment.  相似文献   

4.
The seasonal abundance of Vibrio parahaemolyticus in oysters from two estuaries along the southwest coast of India was studied by colony hybridization using nonradioactive labeled oligonucleotide probes. The density of total V. parahaemolyticus bacteria was determined using a probe binding to the tlh (thermolabile hemolysin) gene, and the density of pathogenic V. parahaemolyticus bacteria was determined by using a probe binding to the tdh (thermostable direct hemolysin) gene. Furthermore, the prevalence of V. parahaemolyticus was studied by PCR amplification of the toxR, tdh, and trh genes. PCR was performed directly with oyster homogenates and also following enrichment in alkaline peptone water for 6 and 18 h. V. parahaemolyticus was detected in 93.87% of the samples, and the densities ranged from <10 to 104 organisms per g. Pathogenic V. parahaemolyticus could be detected in 5 of 49 samples (10.2%) by colony hybridization using the tdh probe and in 3 of 49 samples (6.1%) by PCR. Isolates from one of the samples belonged to the pandemic serotype O3:K6. Twenty-nine of the 49 samples analyzed (59.3%) were positive as determined by PCR for the presence of the trh gene in the enrichment broth media. trh-positive V. parahaemolyticus was frequently found in oysters from India.  相似文献   

5.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

6.
Aims: Two well‐characterized Vibrio parahaemolyticus pathogenicity factors – thermostable direct haemolysin (TDH) and TDHrelated haemolysin – are produced by strains containing the tdh and trh genes, respectively. Most strains of V. parahaemolyticus contain two nonredundant type III secretion systems (T3SS), T3SS1 and T3SS2, both of which contribute to pathogenicity. Furthermore, a recent study has revealed two distinct lineages of the V. parahaemolyticus T3SS2: T3SS2α and T3SS2β. The aim of this study was to determine the incidence of these pathogenicity factors in environmental isolates of V. parahaemolyticus. Methods and Results: We collected 130 V. parahaemolyticus isolates (TCBS agar) containing tdh and/or trh (determined by colony hybridization) from sediment, oyster and water in the northern Gulf of Mexico and screened them and 12 clinical isolates (PCR and agarose gel electrophoresis) for pathogenicity factors tdh, trh, T3SS1, T3SS2α and T3SS2β. The majority of potential pathogens were detected in the sediment, including all tdh?/trh+ isolates. T3SS2α components were detected in all tdh+/trh ? isolates and zero of 109 trh+ isolates. One T3SS2α gene, vopB2, was found in all tdh+/trh? clinical strains but not in any of the 130 environmental strains. Fluorescence in situ hybridization adapted for individual gene recognition (RING‐FISH) was used to confirm the presence/absence of vopB2. T3SS2β was found in all tdh?/trh+ isolates and in no tdh+/trh? isolates. Conclusions: The combination of haemolysins found in each isolate consistently corresponded to the presence and type of T3SS detected. The vopB2 gene may represent a novel marker for identifying increased virulence among strains. Significance and Impact of the Study: This is the first study to confirm the presence of T3SS2β genes in V. parahaemolyticus strains isolated from the Gulf of Mexico and one of the few that examines the distribution and co‐existence of tdh, trh, T3SS1, T3SS2α and T3SS2β in a large collection of environmental strains.  相似文献   

7.
Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh+ V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh+ but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh+, trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh+, trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.  相似文献   

8.
Vibrio parahaemolyticus is a bacterial pathogen that can cause illness after the consumption or handling of contaminated seafood. The primary virulence factors associated with V. parahaemolyticus illness are thermostable direct hemolysin (TDH) and Tdh-related hemolysin (TRH). However, clinical strains lacking tdh and trh have recently been isolated, and these clinical isolates are poorly understood. To help understand the emergence of clinical tdh- and trh-negative isolates, a genomic approach was used to comprehensively compare 4 clinical tdh- and trh-negative isolates with 16 environmental tdh- and trh-negative isolates and 34 clinical isolates positive for tdh or trh, or both, with the objective of identifying genomic features that are unique to clinical tdh- and trh-negative isolates. The prevalence of pathogenicity islands (PAIs) common to clinical isolates was thoroughly examined in each of the clinical tdh- and trh-negative isolates. The tdh PAI was not present in any clinical or environmental tdh- and trh-negative isolates. The trh PAI was not present in any environmental isolates; however, in clinical tdh- and trh-negative isolate 10-4238, the majority of the trh PAI including a partial trh1 gene was present, which resulted in reclassification of this isolate as a tdh-negative and trh-positive isolate. In the other clinical tdh- and trh-negative isolates, neither the trh gene nor the trh PAI was present. We identified 862 genes in clinical tdh- and trh-negative isolates but not in environmental tdh- and trh-negative isolates. Many of these genes are highly homologous to genes found in common enteric bacteria and included genes encoding a number of chemotaxis proteins and a novel putative type VI secretion system (T6SS) effector and immunity protein (T6SS1). The availability of genome sequences from clinical V. parahaemolyticus tdh- and trh-negative isolates and the comparative analysis may help provide an understanding of how this pathotype is able to survive in vivo during clinical illness.  相似文献   

9.
Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh+ V. parahaemolyticus than previously reported.  相似文献   

10.
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.  相似文献   

11.
The thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are the main virulence factors of Vibrio parahaemolyticus. We isolated V. parahaemolyticus from seawater, fish, and oysters obtained from the Pueblo Viejo Lagoon in Veracruz, determined the serogroups, phenotypically and genotypically characterized TDH and TRH, and investigated the presence of the toxR gene. A total of 46 V. parahaemolyticus strains were isolated, and all of them amplified the 368-bp toxR gene fragment. The trh gene was not identified in any of the strains; 4 of the 46 strains were Kanagawa phenomenon (KP) positive and amplified the 251-bp tdh gene fragment. The most frequent serogroup was serogroup O3. This is the first report of the presence of KP-positive tdh-positive environmental V. parahaemolyticus strains in Mexico.  相似文献   

12.
Aims: The aim of this study was to investigate the presence of Vibrio vulnificus and potentially pathogenic strains of Vibrio parahaemolyticus in mullets collected from estuarine environment in Italy. Methods and Results: Two hundred and ninety‐five mullets were analysed by culture using the selective medium thiosulfate citrate bile salt sucrose agar, during a monitoring period of 2 years (2008–2009). Presumptive Vibrio colonies were initially identified by using biochemical tests, and strains identified as V. parahaemolyticus and V. vulnificus were subsequently examined by PCR for the presence of species‐specific and virulence genes (toxR, trh, tdh and vvh). V. parahaemolyticus was found in 55% (162/295) of fishes and V. vulnificus in 1% (3/295) with a higher presence in summer months. The trh+/tdh? strains were detected in 16% (47/295) of samples and only one strain resulted trh+/tdh+. One of the V. parahaemolyticus trh+ strains isolated belonged to the O1:KUT (K untypeable), a serotype recently associated to gastroenteritis in Italy. Conclusions: This is the first report demonstrating a high percentage of potential pathogenic V. parahaemolyticus trh+ strains in estuarine fishes of the Mediterranean area. Significance and Impact of the Study: These findings indicate the potential human health risk associated with the presence of pathogenic Vibrio spp. in wild fishes.  相似文献   

13.
A novel method for detecting viable and thermostable direct hemolysin (TDH)-producing or TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in seafood was developed. The method involved (i) enrichment culture, selective for viable, motile cells penetrating a soft-agar-coated filter paper, and (ii) a multiplex PCR assay targeting both the TDH gene (tdh) and TRH gene (trh) following DNase pretreatment on the test culture to eradicate any incidental DNAs that might have been released from dead cells of tdh- or trh-positive (tdh+ trh+) strains and penetrated the agar-coated filter. A set of preliminary laboratory tests performed on 190 ml of enrichment culture that had been inoculated simultaneously with ca. 100 viable cells of a strain of tdh+ trh+ V. parahaemolyticus and dense populations of a viable strain of tdh- and trh-negative V. parahaemolyticus or Vibrio alginolyticus indicated that the method detected the presence of viable tdh+ trh+ strains. Another set of preliminary tests on 190 ml of enrichment culture that had been initially inoculated with a large number of dead cells of the tdh+ trh+ strain together with dense populations of the tdh- and trh-negative strains confirmed that the method did not yield any false-positive results. Subsequent quasi-field tests using various seafood samples (ca. 20 g), each of which was experimentally contaminated with either or both hemolysin-producing strains at an initial density of ca. 5 to 10 viable cells per gram, demonstrated that contamination could be detected within 2 working days.  相似文献   

14.
Aims: To examine the variability among environmental Vibrio parahaemolyticus (including trh+ isolates) from Norway, and to compare these to clinical isolates and isolates from imported foods. Methods and Results: A total of 246 V. parahaemolyticus were successfully digested with NotI, and the fragments were separated by pulsed field gel electrophoresis (PFGE). The isolates could be divided into 72 clusters and 103 pulsotypes. Eleven clusters contained 4–31 environmental isolates, and the isolates within these clusters greatly varied with respect to origin. None of the trh+ and /or tdh+ isolates clustered with trh?/tdh? isolates. The trh+ environmental isolates included in the study belonged to two separate clusters. A subset of isolates was serotyped, and great serotype diversity was observed among the environmental V. parahaemolyticus. The clinical isolates included O3:K6 and O3:KUT, and these were identical or related to a pandemic reference strain by PFGE. Conclusions: Environmental V. parahaemolyticus (including trh+) were genetically diverse, but certain variants occurred throughout the coastal environment, and some were persistent over time. Significance and Impact of the Study: Although trh+ V. parahaemolyticus persisted in the Norwegian environment, no evidence indicated that indigenous isolates have caused disease.  相似文献   

15.
We developed a multiplexed real-time PCR assay using four sets of gene-specific oligonucleotide primers and four TaqMan probes labeled with four different fluorophores in a single reaction for detection of total and pathogenic Vibrio parahaemolyticus, including the pandemic O3:K6 serotype in oysters. V. parahaemolyticus has been associated with outbreaks of food-borne gastroenteritis caused by the consumption of raw or undercooked seafood and therefore is a concern to the seafood industry and consumers. We selected specific primers and probes targeting the thermostable direct hemolysin gene (tdh) and tdh-related hemolysin gene (trh) that have been reported to be associated with pathogenesis in this organism. In addition, we targeted open reading frame 8 of phage f237 (ORF8), which is associated with a newly emerged virulent pandemic serotype of V. parahameolyticus O3:K6. Total V. parahaemolyticus was targeted using the thermolabile hemolysin gene (tlh). The sensitivity of the combined four-locus multiplexed TaqMan PCR was found to be 200 pg of purified genomic DNA and 104 CFU per ml for pure cultures. Detection of an initial inoculum of 1 CFU V. parahaemolyticus per g of oyster tissue homogenate was possible after overnight enrichment, which resulted in a concentration of 3.3 × 109 CFU per ml. Use of this method with natural oysters resulted in 17/33 samples that were positive for tlh and 4/33 samples that were positive for tdh. This assay specifically and sensitively detected total and pathogenic V. parahaemolyticus and is expected to provide a rapid and reliable alternative to conventional detection methods by reducing the analysis time and obviating the need for multiple assays.  相似文献   

16.
In this study, we have developed a SYBR Green™ I-based real-time multiplexed PCR assay for the detection of Vibrio parahaemolyticus in Gulf of Mexico water (gulf water), artificially seeded and natural oysters targeting three hemolysin genes, tlh, tdh and trh in a single reaction. Post-amplification melt-temperature analysis confirmed the amplification of all three targeted genes with high specificity. The detection sensitivity was 10 cfu (initial inoculum) in 1 ml of gulf water or oyster tissue homogenate, following 5 h enrichment. The results showed 58% of the oysters to be positive for tlh, indicating the presence of V. parahaemolyticus; of which 21% were positive for tdh; and 0.7% for trh, signifying the presence of pathogenic strains. The C t values showed that oyster tissue matrix had some level of inhibition, whereas the gulf water had negligible effect on PCR amplification. The assay was rapid (~8 h), specific and sensitive, meeting the ISSC guidelines. Rapid detection using real-time multiplexed PCR will help reduce V. parahaemolyticus-related disease outbreaks, thereby increasing consumer confidence and economic success of the seafood industry.  相似文献   

17.
A total of 18 strains of V. parahaemolyticus isolated from patients of past food poisoning cases occurring in Kanagawa Prefecture, Japan, were assayed for presence of the thermostable direct hemolysin (TDH) gene and the TDH-related hemolysin (TRH) genes (trh 1 and trh 2) with specific reference to their ability to hydrolyze urea and TDH production. A polymerase chain reaction assay revealed that all urea-hydrolyzing strains (9 strains) carried either trh 1 gene or trh 2 gene. The strains carrying the trh genes as well as the tdh gene produced TDH less by a factor of 4 to 16 than those carrying only the tdh gene, suggesting the expression of the tdh gene was suppressed by the presence of trh gene through a mechanism yet to be defined. Received: 20 September 1996 / Accepted: 6 November 1996  相似文献   

18.
The work was aimed to study the microbial quality of the seafood sold in the domestic markets and incidence of Vibrio parahaemolyticus. Samples comprising of shellfish, finfish, and cephalopods were collected from various fish markets in and around Cochin. Presumed V. parahaemolyticus were identified by standard biochemical tests, and further confirmed by polymerase chain reaction targeting species-specific tl gene (450 bp). About 81% of the samples were found to exceed the limits specified for total plate count while total presumptive V. parahaemolyticus count was above the limit in 71% of the samples ranging from 5.5 × 105 to 9.7 × 107 and 0.31 × 102 to 7.8 × 106 cfu/g, respectively. Pathogenicity of the identified isolates was confirmed by Kanagawa phenomenon and urease activity. A total of 10% of the isolates exhibited weak haemolysis on Wagatsuma agar, and 1% of the isolates showed urease activity using Christensen’s urea agar. Random amplified polymorphic DNA analysis revealed two major clusters based on the species rather than seasonality. The gel pattern revealed 8–10 bands ranging from 0.45 to 3.0 kb. Antibiogram results revealed 85% of the strains sensitive to chloramphenicol and nitrofurantoin. Multiple antibiotic resistance index was found to be 0.4 thus suggesting the risk potential involved in consuming seafoods. The present study has clearly demonstrated the need to adopt seafood safety measures for the products meant for human consumption.  相似文献   

19.
Vibrio parahaemolyticus is an inhabitant of marine and estuarine environments and causes seafood-borne gastroenteritis in humans. In this study, an UltraFast LabChip Real-Time PCR assay was evaluated for rapid detection and quantification of pathogenic V. parahaemolyticus isolates. Escherichia coli and Vibrio harveyi were used as negative controls. Twenty-six tdh-positive, biofilm-producing V. parahaemolyticus isolates were analyzed by repetitive extragenic palindromic-polymerase chain reaction (REP-PCR). REP-PCR analysis showed that the majority of the V. parahaemolyticus isolates originated from seafood and that clinical specimens formed two major clusters at 92.8% and 32% similarity levels. The presence and quantification of Autoinducer-2 was carried out using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) after derivatization of Autoinducer-2 with 2, 3-diaminonaphthalene. The presence of tdh-positive V. parahaemolyticus in marine samples highlights the need for constant environmental monitoring to protect public health.  相似文献   

20.
Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are the major virulence determinants of Vibrio parahaemolyticus. TRH is further differentiated into TRH1 and TRH2 on the basis of genetic and phenotypic differences. We developed a novel and highly specific loop-mediated isothermal amplification (LAMP) assay for sensitive and rapid detection of the tdh, trh1, and trh2 genes of V. parahaemolyticus. The LAMP assay was designed for both combined and individual detection of the tdh, trh1, and trh2 genes and combined detection of the trh1 and trh2 genes. Our results showed that it gave the same results as DNA probes and conventional PCR assays for 125 strains of V. parahaemolyticus, 3 strains of Grimontia hollisae, and 2 strains of Vibrio mimicus carrying the tdh, trh1, and trh2 genes in various combinations. No LAMP products were detected for any of the 20 bacterial strains lacking the tdh, trh1, and trh2 genes. The sensitivities of the LAMP assay for detection of tdh-, trh1-, and trh2-carrying V. parahaemolyticus strains in spiked shrimp samples were 0.8, 21.3, and 5.0 CFU per LAMP reaction tube, respectively. Starting with DNA extraction from a single colony and from spiked shrimp samples, the LAMP assay required only 27 to 60 min and less than 80 min, respectively. This is the first report of a rapid and specific LAMP assay for detection and differentiation of the tdh, trh1, and trh2 genes of V. parahaemolyticus and related Vibrio species.Vibrio parahaemolyticus, which is widely distributed in estuarine, marine, and coastal environments of tropical and temperate zones, causes seafood-borne gastrointestinal disorders in humans (9). Because most clinical isolates of V. parahaemolyticus produce the thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), or both (5, 11, 14), these products are considered important virulence markers of V. parahaemolyticus (4, 5, 9, 11, 14). TDH and TRH are encoded by the tdh and trh genes, respectively. Five sequence variants of the tdh gene (tdh1 to tdh5) can be distinguished, which are >97% identical (1, 10). The tdh gene has also been detected in Grimontia (Vibrio) hollisae and some strains of Vibrio mimicus isolated from patients with diarrhea (9). The trh gene shares ca. 68% sequence identity with the tdh gene (5). Although trh gene sequences vary somewhat among strains, the trh variants can be clustered into two subgroups represented by two trh genes (trh1 and trh2), which share 84% sequence identity (5).Although most clinical isolates carry the tdh and trh genes, either alone or in combination, approximately 99% of environmental isolates do not possess either gene (9). These genes are therefore considered important virulence and epidemiological markers (5, 11, 14). Detection of the tdh and trh genes of V. parahaemolyticus using DNA probe methods is time-consuming and laborious. PCR assays, in contrast, although providing rapid detection of both tdh and trh genes (2, 15), require electrophoresis on an agarose gel, which is time-consuming and tedious. A recent real-time PCR assay for detection of the tdh and trh genes (12) is more rapid than conventional PCR assays but requires sophisticated and expensive equipment.A recently developed novel nucleic acid amplification method termed loop-mediated isothermal amplification (LAMP) (13) is a promising candidate for rapid and easy detection of the tdh and trh genes. A LAMP assay allows one-step detection of gene amplification by simple turbidity analysis and requires only a simple incubator, such as a heat block or a water bath providing a constant temperature. LAMP assays are faster, easier to perform, and more specific than conventional PCR assays (6, 7). Further, they synthesize a large amount of DNA and its by-product, an insoluble white precipitate of magnesium pyrophosphate, and the by-product can be detected by simple turbidity analysis. The increase in the turbidity of the reaction mixture due to the production of the white precipitate correlates with the amount of DNA synthesized (6, 7, 13). Thus, LAMP assays do not require expensive equipment and are highly precise (3, 18, 19).Here we describe a rapid and simple LAMP assay for detection of the tdh, trh1, and trh2 genes of V. parahaemolyticus. We also determined the sensitivity of this LAMP assay using spiked shrimp samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号