首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to elucidate the physiological role of the 41 amino-acid residue corticotropin-releasing factor (41-CRF) on the secretion of ACTH, B-Endorphin and alpha-MSH, plasma levels of these peptides were measured by radioimmunoassay in intact and adrenalectomized rats, two hours after the injection of either 41-CRF antiserum (CRF-AS) or normal rabbit serum for controls. The administration of CRF-AS strikingly lowered the plasma ACTH levels in both intact and adrenalectomized rats. A statistically significant reduction of plasma levels of B-Endorphin was also observed in the same rats. However, the effect of CRF-AS on B-Endorphin release was less pronounced than the effect on ACTH release. No changes in plasma alpha-MSH levels were observed after passive immunization with CRF-AS. We conclude that, in the rat, 41-CRF plays a physiological role in the regulation of ACTH and B-Endorphin secretion, but is not involved in the regulation of alpha-MSH release from the pituitary gland.  相似文献   

2.
Relationships between prolactin and adrenal secretion were studied in the adult male rat by different experimental approaches. Administration of a long acting 1-24 ACTH preparation during 11 days induced a significant decrease in plasma prolactin levels. Adrenalectomy on the contrary resulted in an increase of prolactin levels that were not affected by ACTH treatment. Dexamethasone administration to intact or adrenalectomized animals resulted in a significant reduction of plasma prolactin in both cases. In order to elucidate if the inhibitory effect of the adrenal stimulation on prolactin was mediated through the blockade of endogenous ACTH, stimulation of hypothalamic-pituitary-adrenal axis with chronic intermittent immobilization stress was performed. Stress induced a significant elevation in plasma corticosterone levels, together with a decrease in prolactin values. These data indicated that the inhibitory role of ACTH and stress on prolactin secretion was mediated through the adrenal glucocorticoid stimulation.  相似文献   

3.
1. In order to investigate the role of the adrenocortical system in the regulation of plasma levels of reproductive hormones, adult male white-tailed deer (five intact and one castrated) from a captive herd were sedated with xylazine and ketamine and then challenged with various doses of ACTH with and without dexamethasone (DX) pretreatment. 2. Plasma levels of LH, testosterone (T), FSH, prolactin (PRL) and androstenedione (A) were determined by RIA in serial samples taken from the jugular vein. 3. An increase of A levels detected after ACTH in both intact and castrated deer indicated stimulation of secretion of adrenal androgens by ACTH. 4. No effect on FSH and PRL levels was observed in either group. 5. A significant decline of LH and T observed in various treatments could not be attributed to ACTH or DX administration. It is speculated that the decrease may be caused by anaesthetics which alleviate the stress induced in deer by the pre-immobilization activities.  相似文献   

4.
Administration of pharmacological doses of glucocorticoid to male rats in vivo suppresses adrenal steroidogenesis and inhibits testicular steroidogenesis by inhibiting the anterior pituitary secretion of LH. In contrast, administration of ACTH to these pharmacologically-suppressed rats stimulates the adrenal secretion of progesterone and testicular steroidogenesis. The mechanism by which ACTH increases testicular steroidogenesis is dependent on the presence of the adrenal gland and is reproduced by the administration of progesterone. The conclusion from these data is that the adrenal gland has an important role in generating external signals that modulate the hypothalamic-pituitary-gonadal axis in male rats. The adrenal secretion of glucocorticoid acts as a negative signal to testicular steroidogenesis whereas progesterone acts as a positive signal. The adrenal secretion of progesterone and its conversion to testosterone by steroidogenic enzymes in the cytoplasm of the Leydig cell may provide an alternative pathway for testosterone biosynthesis and may account for the increased plasma testosterone levels during the acute phase of stress and mating.  相似文献   

5.
The actions of ACTH on the adrenal cortex are known to be 2-fold. In addition to increased steroidogenesis, ACTH also causes marked vasodilation, reflected by an increased rate of blood flow through the gland. Our studies, using the in situ isolated perfused rat adrenal preparation, have shown that zona fasciculata function and corticosterone secretion are closely related to vascular events, with an increase in perfusion medium flow rate causing an increase in corticosterone secretion, in the absence of any known stimulant. These observations give rise to two important questions: how does ACTH stimulate blood flow; and how does increased blood (or perfusion medium) flow stimulate steroidogenesis? Addressing the first question, we have recently identified mast cells in the adrenal capsule, and shown that Compound 48/80, a mast cell degranulator, mimics the actions of ACTH on adrenal blood flow and corticosterone secretion. We have also demonstrated an inhibition of the adrenal vascular response to ACTH in the presence of disodium cromoglycate, which prevents mast cell degranulation. We conclude, therefore, that ACTH stimulates adrenal blood flow by its actions on mast cells in the adrenal capsule. Addressing the second question, we looked at the role of endothelin in the rat adrenal cortex. Endothelin 1, 2 and 3 caused significant stimulation of steroid secretion by collagenase dispersed cells from both the zona glomerulosa and the zona fasciculata. A sensitive response was seen, with significant stimulation at an endothelin concentration of 10(-13) mol/l or lower. Endothelin secretion by the in situ isolated perfused rat adrenal gland was measured using the Amersham assay kit. Administration of ACTH (300 fmol) caused an increase in the rate of immunoreactive endothelin secretion, from an average of 28.7 +/- 2.6 to 52.6 +/- 6 fmol/10 min (P less than 0.01, n = 5). An increase in immunoreactive endothelin secretion was also seen in response to histamine, an adrenal vasodilator, which stimulates corticosterone secretion in the intact gland, but has no effect on collagenase-dispersed cells. From these data we conclude that endothelin may mediate the effects of vasodilation on corticosterone secretion, and this mechanism may explain some of the differences in response characteristics between the intact gland and dispersed cells.  相似文献   

6.
The aim of this study was to compare the response of cortisol in sheep of different sex and gonadal status to adrenal cortex stimulation by an ACTH analogue in the breeding and non-breeding season. Twenty-four adult Corriedale sheep were used in the non-breeding season, and 19 in the breeding season. Three weeks prior to the first trial (non-breeding season), six rams and six ewes were gonadectomised. In each trial, blood was obtained every 15min for 9h and the animals received 0.5mg of ACTH (Tetracosactid, Synacthen Depot i.m., after 1.5h of sampling. Sampling began at 10:00a.m. in the non-breeding season and at 9:00a.m. in the breeding season. Three main effects (sex, gonadal status and season) were evaluated, each with two levels (male and female, intact and gonadectomised, breeding and non-breeding season, respectively). In both seasons, the females showed higher cortisol levels after ACTH than males (P<0.001), though the difference seemed less marked in the non-breeding season. The cortisol response in the ewes was not affected by season. The rams, however, showed a lower response in the breeding season (P<0.03). Gonadectomy reduced the response in the ewes (P<0.001) but had no effect in the rams. Nevertheless, gonadectomy also eliminated the differences between the ewes and the rams, such that the intact rams had lower levels of cortisol compared to the intact females, with those of the gonadectomised animals of both sexes being intermediate between the gonad-intact groups. The results of this study confirm sex differences in ACTH induced cortisol secretion in intact sheep in vivo. Furthermore, by applying exogenous ACTH we have directly stimulated the adrenal cortex, indicating the existence of sex differences also at this level. The circulating gonadal steroids, which are responsible at least in part for the sex differences in the responses to stress, may influence cortisol secretion from the adrenal gland by direct action at the cortex.  相似文献   

7.
The pituitary-adrenal response to ether stress in the spontaneously hypertensive (SHR) and normotensive (WKYN) rat was investigated at three time intervals: 0, 30, and 60 min after exposure to ether vapor. Plasma corticosterone concentrations were significantly higher in the WKYN than SHR rat before stress (0 min), and 30 min after stress. However, 60 min following ether stress the magnitude of increase in plasma and adrenal concentration of corticosterone over basal values was greater in the SHR line than in the WKYN line. The adrenal response to IV administration of 100 μU of ACTH was equivalent in the two lines. The data suggest that the prolonged adrenal response to ether stress in the SHR line is the result of a greater or more prolonged secretion of ACTH in that line than in the WKYN animals.  相似文献   

8.
Epinephrine (E) and norepinephrine (NE) levels were measured simultaneously in the adrenal veins of 6 patients before and after stimulation with 0.25 mg beta 1-24 ACTH. In 1 patient with Cushing's syndrome, E and NE were also measured before and 30 min after dexamethasone. There was a significant increase in NE and E secretion (p less than 0.002) from both adrenal glands after ACTH stimulation. In the patient with Cushing's syndrome, there was also a slight increase in plasma E levels after dexamethasone. It is postulated that ACTH stimulated NE and E secretion by augmenting blood flow through the adrenals and by induction of tyrosine hydroxylase and dopamine beta-hydroxylase, although a direct effect of ACTH on NE and E secretion cannot be excluded. It is also possible that the increase in adrenal catecholamine secretion after ACTH may be due to ACTH augmentation of catecholamine secretion by endogenous opioids such as beta-endorphin.  相似文献   

9.
Plasma glucocorticosteroid levels were significantly elevated 1 hr after confinement stress or (1-24)ACTH administration. Both adrenal content and in vitro secretion of glucocorticosteroids and progesterone from adrenals of stressed or (1-24)ACTH-injected animals were higher than values measured in controls. Neither adrenal testosterone content nor output of testosterone or progesterone from superfused testes were changed. Significant correlations were obtained between glucocorticosteroid plasma levels and corresponding adrenal content/in vitro secretion, adrenal progesterone content and output, and between adrenal glucocorticosteroid and progesterone content.  相似文献   

10.
Changes in adrenal renin, which have been regarded as mediator of aldosterone secretion in the adrenal gland, following prolonged ACTH treatment were investigated in male Wistar rats. After 2 days of daily sc injection of ACTH (Cortrosyn-Zinc, 50 micrograms/day), parallel increases in adrenal renin and aldosterone, and plasma aldosterone (PA) were induced. The plasma renin activity (PRA) was slightly but not significantly decreased. Prolonged treatment with ACTH for 8 days increased the adrenal renin, causing a marked reduction in the adrenal aldosterone concentration. The degree of decrease in the PRA was again not significant and similar to that after 2 days of ACTH treatment. Contrary to previout reports which have indicated participation of adrenal renin in the regulation of aldosterone secretion in the adrenal gland, the present results showed reciprocal changes in adrenal renin and aldosterone after prolonged treatment with ACTH. The present findings suggest a complicated relation between adrenal renin and aldosterone secretion in the adrenal gland.  相似文献   

11.
Membranes prepared from the adrenal gland of mice and rats possess high affinity binding sites that recognize 125I-labeled human low density lipoprotein (LDL). These binding sites resemble the functional LDL receptors that mediate the uptake of LDL by cultured mouse and bovine adrenal cells. The number of LDL binding sites per mg of membrane protein increased 2- to 5-fold over 24 h when mice or rats were treated with adrenocorticotropin (ACTH). In rats, this increase was accompanied by a similar ACTH-induced increase in the adrenal uptake of intravenously administered 125I-LDL, suggesting that the LDL binding sites mediate the uptake of LDL by the adrenal in the intact animal. The number of LDL binding sites on adrenal membranes rose by 5-fold when animals were rendered lipoprotein-deficient, either by treatment of mice with 4-aminopyrazolopyrimidine or by treatment of rats with 17 alpha-ethinyl estradiol. This increase was prevented when endogenous ACTH secretion was blocked by administration of dexamethasone, suggesting that ACTH was required. The current experiments suggest that LDL receptors provide one source of cholesterol for the mouse and rat adrenal in vivo and that the number of LDL receptors of this organ is regulated by ACTH.  相似文献   

12.
To study the contribution of adrenomedullin in the adrenal medulla in the stress response, we measured plasma and adrenal levels of adrenomedullin in sham-operated (intact) rats and in rats without adrenal medulla, with or without exposure to ether vapor for 15 min. Adrenomedullin levels decreased drastically after demedullation. Effect stress resulted in increased adrenomedullin levels in both adrenal and plasma in sham-operated rats, but not in demedullated rats. The responses of plasma adrenocorticotropin to stress were similar, but the elevations in plasma corticosterone levels were significantly less in demedullated rats. In the sham-operated rat, preproadrenomedullin mRNA levels were increased after stress, and this effect was not blocked by pretreatment with hexamethonium. We conclude that stress increases adrenomedullin synthesis and secretion from the adrenal medulla through a hexamethonium-insensitive mechanism, and that adrenomedullin release from the adrenal medulla may play a role in cortical steroidogenesis.  相似文献   

13.
Selenium deficiency causes oxidative stress and impairs steroidogenesis in vitro. Leptin is closely related to the hypothalamo-pituitary-adrenal (HPA) axis. Leptin inhibits the HPA axis at the central level while corticosteroids have been shown to stimulate leptin secretion in most studies. We hypothesized that oxidative stress impairs adrenal steroidogenesis and decreases leptin production in vivo. The goal of this study was to investigate in rats the effects of selenium deficiency and oxidative stress on adrenal function and on leptin concentrations. Weanling rats were fed a selenium-deficient (Se-) or selenium-sufficient (Se+) diet for 4-10 weeks. Selenium deficiency caused a marked decrease in liver (> or = 99%) and adrenal (> or = 81%) glutathione peroxidase (GPx) activities. Selenium deficiency did not affect basal and short-term adrenocorticotropin (ACTH) stimulated corticosterone or leptin concentrations. In contrast, after long-term ACTH stimulation, selenium deficiency caused a doubling in adrenal isoprostane content and blunted the increase in corticosterone and leptin concentrations observed in Se+ animals. Plasma leptin concentrations were 50% lower in Se- compared to Se+ animals following long-term ACTH. Our results suggest that oxidative stress causes a decrease in circulating corticosterone in response to ACTH, and, as a consequence, a decrease in plasma leptin concentrations.  相似文献   

14.
15.
Activity of the hypothalamic-pituitary-adrenal axis is characterized by a diurnal rhythm with an AM nadir and PM peak. Splanchnic nerve transection disrupts the diurnal rhythm in plasma corticosterone; however, there is a controversy as to whether the nerve-mediated effect is 1) via inhibition in the AM vs. excitation in the PM, or 2) involves changes in adrenal sensitivity to ACTH. The present studies were designed to address these issues. Adult male rats were anesthetized and underwent bilateral transection of the thoracic splanchnic nerve or sham transection. One week after surgery, rats were killed in the AM or PM with collection of nonstress plasma for measurement of corticosterone and ACTH. Plasma corticosterone was increased in the PM relative to the AM; however, plasma corticosterone in the PM was attenuated by splanchnic nerve transection, without affecting plasma ACTH. This decrease in PM plasma corticosterone after nerve-transection was 1) associated with decreased adrenal responsivity to ACTH, 2) associated with decreased adrenal cAMP content, 3) prevented by adrenal demedullation, and 4) not affected by removal of adrenal capsaicin-sensitive afferent fibers. Repeated serial blood sampling from individual rats confirmed the excitatory effect of splanchnic innervation in the PM. These results support the hypothesis that the adrenal splanchnic innervation modulates the diurnal rhythm in plasma corticosterone by increasing adrenal responsivity to ACTH and augmenting steroidogenesis in the PM and suggest that alterations in adrenal corticosterone secretion obscured by pulsatile secretion are more clearly revealed with repeated serial blood sampling.  相似文献   

16.
Potentially fatal sodium imbalance occurs in captive and free-ranging pinnipeds and is associated with a variety of stressors. We sought to determine the role of adrenal hormones, principally aldosterone, in the development of this condition. To induce hyponatremia, two ringed seals, Phoca hispida , were maintained in fresh water and fed a low-sodium diet; as controls, two other ringed seals were held in salt water and received a salt-supplemented diet. After 3–6 mo, adrenocorticotropic hormone (ACTH) was used to assess adrenocortical function. In normonatremic control seals, ACTH produced a 2-j-fold increase in circulating cortisol and a 7-fold increase in aldosterone. One of the experimental seals maintained normal plasma sodium levels, and ACTH elicited an exaggerated aldosterone response. The other salt-deprived seal became hypo-natremic, and ACTH had little effect on plasma aldosterone levels. An ACTH stimulation test performed on a spontaneously hyponatremic harp seal, P. groenlandica , which had been maintained in a salt-rich environment, failed to elicit cortisol or aldosterone secretion from the adrenal cortex. This study demonstrated the unusual sensitivity of the seal's zona glomerulosa to central stimulation, providing a mechanism through which the stress response might exhaust adrenal hormone reserves or desensitize the cortex to other physiological stimuli.  相似文献   

17.
Administration of estradiol-17 beta for 7 days to the adult male rat results in adrenal hyperplasia, decreased serum corticosterone along with elevation in serum ACTH and inhibition of adrenal 5-ene-3 beta-hydroxysteroid dehydrogenase activity (5-ene-3 beta-HSD). Treatment with alpha 2u-globulin for following 14 days of estrogen-treated rats reversed the effects of estrogen while in normal rats alpha 2u-globulin treatment increased adrenal 5-ene-3 beta-HSD activity and serum corticosterone level while causing a fall in serum ACTH. It is concluded that alpha 2u-globulin may play a role in ACTH secretion by inducing corticosterone synthesis.  相似文献   

18.
16- and 4-week-old intact and adrenalectomized rats have been treated with different doses of the three glucocorticoids hydrocortisone, prednisolone and dexamethasone by gavage. The delayed feedback effect on plasma ACTH and corticosterone response to an ether stress have been assessed. Almost complete suppression of corticosterone response 20 min after an ether stress and an ACTH suppression to 20% of control values 5 min after an ether stress were observed with 25 micrograms of dexamethasone, 10 mg of prednisolone and 20 mg of hydrocortisone. Although the percent inhibition of corticosterone and ACTH response to stress was comparable, a striking dissociation of the ACTH and corticosterone release was observed in terms of absolute concentrations. A mean ACTH concentration of 462 ng/l after 25 micrograms of dexamethasone was measured together with a barely measurable corticosterone concentration of 3 micrograms%. Similarly, after 10 mg of prednisolone, the mean ACTH concentration was 404 ng/l, whilst the mean corticosterone concentration was 3 micrograms%. This dissociation demonstrates that the corticosterone concentration on its own does not necessarily reflect the ACTH release. At 4 weeks of age, the ACTH response to stress is more difficult to suppress than in adult animals. This is more obvious after adrenalectomy, where the excessive ACTH secretion was less inhibited by all glucocorticoids used. The time between the last steroid gavage and stress must be considered. In 4-week-old animals the ACTH response 16 h after 12.5 micrograms of dexamethasone was inhibited by 22%, whereas 4 h after the same dexamethasone dose the inhibition was 85%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
C Rivier  W Vale 《Life sciences》1981,29(15):1523-1529
The effect of the GnRH superagonist [D-Trp6, Pro9-NEt]-GnRH (SA) and ACTH on progesterone (Po) secretion was compared in intact, adrenalectomized (ADX), castrated (CST) or hypophysectomized (hypox) adult male rats. SA increased circulating gonadal plasma Po levels only, while ACTH acted on the adrenal secretion of this steroid, but not the gonadal one. The concomitant administration of dexamethasone partially inhibited the SA-induced increase in gonadal Po production. SA did not modify plasma Po levels in hypox rats. By contrast, ACTH did not require the presence of the pituitary to stimulate Po secretion. This data indicates that adrenal steroids may modulate some of the effects of GnRH and its agonists on the testes.  相似文献   

20.
The adrenal gland is an essential stress-responsive organ that is part of both the hypothalamic-pituitary-adrenal axis and the sympatho-adrenomedullary system. Chronic stress exposure commonly increases adrenal weight, but it is not known to what extent this growth is due to cellular hyperplasia or hypertrophy and whether it is subregion specific. Moreover, it is not clear whether increased production of adrenal glucocorticoid after chronic stress is due to increased sensitivity to adrenocorticotropic hormone (ACTH) vs. increased maximal output. The present studies use a 14-day chronic variable stress (CVS) paradigm in adult male rats to assess the effects of chronic stress on adrenal growth and corticosterone steroidogenesis. Exogenous ACTH administration (0-895 ng/100 g body wt) to dexamethasone-blocked rats demonstrated that CVS increased maximal plasma and adrenal corticosterone responses to ACTH without affecting sensitivity. This enhanced function was associated with increased adrenal weight, DNA and RNA content, and RNA/DNA ratio after CVS, suggesting that both cellular hyperplasia and hypertrophy occurred. Unbiased stereological counting of cells labeled for Ki67 (cell division marker) or 4,6-diamidino-2-phenylindole (nuclear marker), combined with zone specific markers, showed that CVS induced hyperplasia in the outer zona fasciculata, hypertrophy in the inner zona fasciculata and medulla, and reduced cell size in the zona glomerulosa. Collectively, these results demonstrate that increased adrenal weight after CVS is due to hyperplasia and hypertrophy that occur in specific adrenal subregions and is associated with increased maximal corticosterone responses to ACTH. These chronic stress-induced changes in adrenal growth and function may have implications for patients with stress-related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号