首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We isolated Microtus agrestis-mouse somatic cell hybrid clones which had retained either the active or the inactive M. agrestis X chromosome. In both hybrid clones the X chromosomes retained their original chromatin conformation as studied by the in situ nick translation technique — the active X chromosome retained its high sensitivity to DNase I while the inactive one remained insensitive. A clone in which the hypoxanthine guanine phosphoribosyltransferase (HPRT) gene had been spontaneously reactivated was isolated from the hybrid containing the inactive X chromosome. The in situ nick translation technique was used to study possible DNA conformation changes in the euchromatin of the inactive X chromosome with special reference to the reactivated HPRT locus. We found that the euchromatin in this X chromosome exhibited the same low sensitivity to DNase I as is characteristic of the inactive X chromosome.Professor Marcus passed away on 2 January 1987  相似文献   

2.
Microtus agrestis is characterised by long sex chromosomes, most of which are constitutively heterochromatic, and thus supposedly, genetically inactive. A method to assess the template activity of the chromosomes is to study the distribution of chromatid aberrations produced by H3UdR, among and within the chromosomes. In such a study, in female Microtus agrestis cells in culture, it was found that, a large number of localised chromatid aberrations was induced in the constitutively heterochromatic regions of both X chromosomes. The frequency distribution and types of aberrations were found to be cell cycle dependent. With differential staining it has been possible to demonstrate that the constitutive heterochromatin of the sex chromosomes are involved in the nucleolar organisation in this species, thus containing the ribosomal RNA cistrons.  相似文献   

3.
Mapping of DNAase I sensitive regions on mitotic chromosomes   总被引:8,自引:0,他引:8  
B S Kerem  R Goitein  G Diamond  H Cedar  M Marcus 《Cell》1984,38(2):493-499
We have shown that in fixed mitotic chromosomes from female G. gerbillus cells the inactive X chromosome is distinctly less sensitive to DNAase I than the active X chromosome, as demonstrated by in situ nick translation. These results indicated that the specific chromatin conformation that renders potentially active genes sensitive to DNAase I is maintained in fixed mitotic chromosomes. We increased the sensitivity and accuracy of in situ nick translation using biotinylated dUTP and a specific detection and staining procedure instead of radioactive label and autoradiography and now show that in both human and CHO chromosomes, the DNAase I sensitive and insensitive chromosomal regions form a specific dark and light banding pattern. The DNAase I sensitive dark D-bands usually correspond to the light G-bands, but not all light G-bands are DNAase I sensitive. Identifiable regions of inactive constitutive heterochromatin are in a DNAase I insensitive conformation. Our methodology provides a new and important tool for studying the structural and functional organization of chromosomes.  相似文献   

4.
Treatment with 5-azacytidine (5-aza-C) causes an advance in the time of replication and enhances the DNase-I sensitivity of the inactive X chromosome in Gerbillus gerbillus fibroblasts. We found that these changes were not stably inherited and upon removal of the drug the cells reverted to the original state of one active and one inactive X chromosome. In order to determine whether this reversion was random, we used a cell line of female Microtus agrestis fibroblasts in which the two X chromosomes are morphologically distinguishable. In this work we show that the reversion to a late pattern of replication is not random, and the originally late replicating X chromosome is preferentially reinactivated, suggesting an imprinting-like marking of one or both X chromosomes. The changes in the replication pattern of the X chromosome were associated with changes in total DNA methylation. Double treatment of cells with 5-aza-C did not alter this pattern of euchromatin activation and reinactivation. A dramatic advance in the time of replication of the entire X linked constitutive heterochromatin (XCH) region was however, observed in the doubly treated cells. This change in the replication timing of the XCH occurred in both X chromosomes and was independent of the changes observed in the euchromatic region. These observations suggest the existence of at least two independent regulatory sites which control the timing of replication of two large chromosomal regions.Deceased on 2 Jan. 1987  相似文献   

5.
We investigated the conformation of the X-linked mouse hypoxanthine-guanine phosphoribosyltransferase gene (HPRT) promoter region both in chromatin from the active and inactive X chromosomes with DNase I and in naked supercoiled DNA with S1 nuclease. A direct comparison of the chromatin structures of the active and inactive mouse HPRT promoter regions was performed by simultaneous DNase I treatment of the active and inactive X chromosomes in the nucleus of interspecies hybrid cells from Mus musculus and Mus caroli. Using a restriction fragment length polymorphism to distinguish between the active and inactive HPRT promoters, we found a small but very distinct difference in the DNase I sensitivity of active versus inactive chromatin. We also observed a single DNase I-hypersensitive site in the immediate area of the promoter which was present only on the active X chromosome. Analysis of the promoter region by S1 nuclease digestion of supercoiled plasmid DNA showed an S1-sensitive site which maps adjacent to or within the DNase I-hypersensitive site found in chromatin but upstream of the region minimally required for normal HPRT gene expression.  相似文献   

6.
T. Haaf  M. Schmid 《Chromosoma》1989,98(2):93-98
Fibroblasts of female Microtus agrestis were treated with 5-azadeoxycytidine (5-aza-dCyd) at a final concentration of 10–5 M during the last 2 h of culture. This cytidine analogue induces distinct undercondensation of the constitutive heterochromatin in the giant X chromosomes. The undercondensed heterochromatic thread exhibits longitudinal segmentation reminiscent of a chromomere pattern. In the late-replicating X chromosome, 5-aza-dCyd also inhibits condensation of the genetically inactivated euchromatin (facultative heterochromatin). The described effects of 5-aza-dCyd on the X chromosome structure appear to be incorporation independent.  相似文献   

7.
Meiotic pairing constraints and the activity of sex chromosomes   总被引:5,自引:0,他引:5  
The state of activity and condensation of the sex chromosomes in gametocytes is frequently different from that found in somatic cells. For example, whereas the X chromosomes of XY males are euchromatic and active in somatic cells, they are usually condensed and inactive at the onset of meiosis; in the somatic cells of female mammals, one X chromosome is heterochromatic and inactive, but both X chromosomes are euchromatic and active early in meiosis. In species in which the female is the heterogametic sex (ZZ males and ZW females), the W chromosome, which is often seen as a condensed chromatin body in somatic cells, becomes euchromatic in early oocytes. We describe an hypothesis which can explain these changes in the activity and condensation of sex chromosomes in gametocytes. It is based on the fact that normal chromosome pairing seems to be essential for the survival of sex cells; chromosomal anomalies resulting in incomplete pairing during meiosis usually result in gametogenic loss. We argue that the changes seen in the sex chromosomes reflect the need to avoid pairing failure during meiosis. Pairing normally requires structural and conformational homology of the two chromosomes, but when the regions is avoided when these regions become heterochromatinized. This hypothesis provides an explanation for the changes found in gametocytes both in species with male heterogamety and those with female heterogamety. It also suggests possible reasons for the frequent origin of large supernumerary chromosomes from sex chromosomes, and for the reported lack of dosage compensation in species with female heterogamety.  相似文献   

8.
F. Pera 《Chromosoma》1972,36(3):263-271
The distribution of repetitive DNA in the chromosomes of Microtus agrestis was studied with the method for demonstrating constitutive heterochromatin given by Yunis et al. (1971) and the reassociation technique described by Schnedl (1971). All autosomes can be individually recognized by means of the position of their bands. The euchromatic segment of the X1 chromosome shows the same banding pattern as the corresponding segment of X2 which consists of facultative heterochromatin. The short arms of the Y chromosome are not deeply stained with either method and therefore do not contain noticeable amounts of repetitive DNA. The relative distances between the bands remain constant during chromosome contraction in mitosis.  相似文献   

9.
Mitomycin C (MC) -induced chromatid aberrations among the chromosomes of Microtus agrestis are preferentially localized in the constitutive heterochromatic regions, i.e., major part of the sex chromosomes and the centromeric regions of the autosomes. In the sex chromosomes, intrachanges predominate, while interchanges between the two X chromosomes are very rare. This pattern of distribution of different types of aberrations is interpreted as due to the individual chromocentres that are formed by the two X chromosomes in the interphase.  相似文献   

10.
Franz Pera 《Human genetics》1969,8(3):217-229
Zusammenfassung In unbehandelten Nierenepithel-und Fibroblastenkulturen von Microtus agrestis wurden Brüche, Deletionen und Translokationen an den heterochromatischen langen Armen von X-und Y-Chromosomen in 2% aller Mitosen eines weiblichen und 3% der Mitosen eines männlichen Tieres gefunden. In tetraploiden Mitosen sind Deletionen häufiger als in diploiden zu finden. Die Deletionen treten sowohl auf dem X1 und X2 des Weibchens als auch auf dem X und Y des Männchens auf. Längenmessungen an normalen und deletierten Chromosomen ergaben, daß die bevorzugte Bruchlokalisation beim X-Chromosom am Übergang vom proximalen zum mittleren Drittel der langen Arme liegt, beim Y in der Mitte der langen Arme. Es wurden Translokationen der azentrischen Fragmente auf die langen Arme von X-Chromosomen und Fusion deletierter X-Chromosomen zu dizentrischen Chromosomen beobachtet, jedoch keine Translokation auf euchromatische Chromosomen. Das häufigere Auftreten von ein oder zwei deletierten Chromosomen in tetraploiden Zellen wird durch Fusion zweier diploider (Schwester-) Kerne in zweikernigen Zellen erklärt die durch Mitose ohne nachfolgende Plasmateilung einer diploiden Zelle mit Chromatidbruch oder deletiertem Chromosome entstanden sind.
Deletion and translocation of heterochromatic chromosome segments of Microtus agrestis
Summary Breaks, deletions and translocations of the heterochromatic long arms of the X and Y chromosomes were found in 2% of all female mitoses and 3% of male mitoses of untreated kidney epithelial cell and fibroblast cultures of Microtus agrestis. Deletions are more frequent in tetraploid than in diploid mitoses. Deletions were found in the X1 and X2 of the female as well as in the X and Y of the male. Length measurements of normal and deleted chromosomes showed that the breaks in the X are preferentially located between the proximal and middle third of the long arm, whereas in the Y chromosome they are near the middle of the long arm. Translocations of acentric fragments to the long arms of X chromosomes and fusions of deleted X chromosomes resulting in dicentric chromosomes were also observed, but no translocations to euchromatic chromosomes could be found. The relatively high frequency of one or two deleted chromosomes in tetraploid cells is explained by a fusion of two diploid (sister-) nuclei in binucleated cells resulting from mitosis without cytoplasmic division of diploid cells with a break of a chromatid or a deleted chromosome.


Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

11.
Chromosome segregation ensures the equal partitioning of chromosomes at mitosis. However, long chromosome arms may pose a problem for complete sister chromatid separation. In this paper we report on the analysis of cell division in primary cells from field vole Microtus agrestis, a species with 52 chromosomes including two giant sex chromosomes. Dual chromosome painting with probes specific for the X and the Y chromosomes showed that these long chromosomes are prone to mis-segregate, producing DNA bridges between daughter nuclei and micronuclei. Analysis of mitotic cells with incomplete chromatid separation showed that reassembly of the nuclear membrane, deposition of INner CENtromere Protein (INCENP)/Aurora B to the spindle midzone and furrow formation occur while the two groups of daughter chromosomes are still connected by sex chromosome arms. Late cytokinetic processes are not efficiently inhibited by the incomplete segregation as in a significant number of cell divisions cytoplasmic abscission proceeds while Aurora B is at the midbody. Live-cell imaging during late mitotic stages also revealed abnormal cell division with persistent sister chromatid connections. We conclude that late mitotic regulatory events do not monitor incomplete sister chromatid separation of the large X and Y chromosomes of Microtus agrestis, leading to defective segregation of these chromosomes. These findings suggest a limit in chromosome arm length for efficient chromosome transmission through mitosis.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
13.
A method has been developed for isolating metaphase chromosomes from Microtus agrestis fibroblasts in relatively large quantities with recovery of about 50% of the chromosomes present in the metaphase cells. The method employs pressure homogenisation to release the chromosomes from the cells. The average chemical composition of the Microtus chromosome preparations is 24.6% DNA, 19.9% RNA and 55.5% protein. The isolated chromosomes were fractionated by sedimentation velocity in a density gradient into three size groups in one of which 75–80% of the chromosomes were the large sex-chromosomes. The relative composition of this fraction containing most of the heterochromatin of the cell was DNA: 100, RNA: 59, acid-soluble protein: 54, acid-insoluble protein: 178. — Disc electrophoresis studies revealed no significant difference in the histone patterns between the euchromatic and heterochromatic chromosomes of the three chromosome size-groups. Metaphase chromosomes appear to have a lower lysine-rich histone content than interphase nuclei.  相似文献   

14.
The overall nuclease sensitivity and methylation of active and inactive X chromosomes of kangaroos were examined by in situ nick translation. Cultured fibroblasts of subspecies wallaroo-euro (Macropus robustus robustus; Macropus robustus erubescens) hybrids were used, enabling the paternally and maternally derived X chromosomes to be distinguished. No difference was found between the active and inactive X chromosomes with DNase I or MspI digestion. When chromosomes were digested with the methylation sensitive restriction enzymes HpaII and HhaI, the inactive X chromosome was labelled to a greater extent. These results indicate no overall difference in chromatin condensation between the active and inactive X chromosomes and greater overall methylation of the active X chromosome. This relative undermethylation of the inactive X chromosome may be important in X chromosome inactivation, but its function, if any, remains to be determined.by A. Bird  相似文献   

15.
In the housefly, male sex is determined by a dominant factor, M, located either on the Y, on the X, or on any of the five autosomes. M factors on autosome I and on fragments of the Y chromosome show incomplete expressivity, whereas M factors on the other autosomes are fully expressive. To test whether these differences might be caused by heterochromatin-dependent position effects, we studied the distribution of heterochromatin on the mitotic chromosomes by C-banding and by fluorescence in situ hybridization of DNA fragments amplified from microdissected mitotic chromosomes. Our results show a correlation between the chromosomal position of M and the strength of its male-determining activity: weakly masculinizing M factors are exclusively located on chromosomes with extensive heterochromatic regions, i.e., on autosome I and on the Y chromosome. The Y is known to contain at least two copies of the M factor, which ensures a strong masculinizing effect despite the heterochromatic environment. The heterochromatic regions of the sex chromosomes consist of repetitive sequences that are unique to the X and the Y, whereas their euchromatic parts contain sequences that are ubiquitously found in the euchromatin of all chromosomes of the complement. Received: 20 February 1998; in revised form: 11 May 1998 / Accepted: 23 May 1998  相似文献   

16.
Canio G. Vosa 《Chromosoma》1970,31(4):446-451
Mitotic and salivary gland chromosomes of D. melanogaster show striking fluorescent patterns when stained with Quinacrine. In the salivary gland chromosomes there are up to five strongly fluorescing bands located on the fourth chromosome and at the proximal end of the X chromosome.—In mitotic cells the Y chromosome shows four fluorescent segments and other fluorescent regions are found proximally on the third pair and on the X chromosome. It is, therefore, possible to distinguish male and female interphase cells by their patterns of fluorescence.—A comparison between the position of heterochromatic, late replicating and fluorescing segments in the mitotic chromosomes, shows differences which demonstrate, for the first time, the chemical, morphological and genetical diversity of these three types of segments.  相似文献   

17.
Differences in DNA composition along mammalian metaphase chromosomes   总被引:1,自引:1,他引:0  
Denaturation of chromosomal DNA in situ can be achieved without disruption of chromosomal morphology by heating slides at 25–90° C in 10–95% formamide in SSC. The extent of denaturation is proportional to formamide concentration and temperature. Reassociation of denatured DNA is prevented with formaldehyde. — The DNA in the paracentromeric constrictions in human chromosomes 1, 9 and 16 denatures earlier than in any other regions, as shown by the red colour with acridine orange. When the temperature or formamide concentration is raised a red and green banding pattern emerges in which regions known to stain brightly with quinacrine mustard are red whereas other regions are green. The last regions to turn red are the short arms of some acrocentric chromosomes. Since A+T-rich DNA denatures before G+C-rich DNA, it is inferred that QM-bright areas are rich in A+T. Similar results are obtained with mouse and Microtus agrestis cells. — Reassociation of chromosomal DNA denatured by heat and formamide occurs if no formaldehyde is used. In human cells, kinetic studies on reassociation indicate that the highest degree of repetition is in the DNA of the distal half of the Y chromosome. Next in degree of repetition are the paracentromeric constrictions, the short arm regions of some of the acrocentric chromosomes, and all the centromeric regions. Highly repetitious DNA is found in all mouse centromeric regions except that of the Y chromosome. Constitutively heterochromatic segments of X and Y and the autosomal centromeric regions of Microtus agrestis also contain repetitious DNA. — It is proposed that differential base content and susceptibility to denaturation of DNA contribute to or at least accompany Q-, G- and R-banding. The degree of C-banding is related to repetitious DNA. The human Y chromosomal DNA is probably A+T-rich and exceptionally repetitious, exhibiting spontaneous reassociation under many experimental conditions.  相似文献   

18.
F. Pera  P. Mattias 《Chromosoma》1976,57(1):13-18
A method of labelling DNA in vivo with 5-bromodeoxyuridine (BrdU) is described. After 6 h permanent subcutaneous infusion of BrdU in rodents (adult Microtus agrestis, pregnant NMRI-mice), cell nuclei which have undergone DNA synthesis during the BrdU treatment can be differentiated from the nuclei of other cycle stages by means of their altered staining behaviour after Giemsa. 24 h after the BrdU treatment, mitoses from both bone marrow of the adult animals and tissues from the fetuses showed a differential sister chromatid staining. In male M. agrestis, sister chromatid exchanges were most frequently found in the euchromatic part of the X and in the constitutive heterochromatin of both sex chromosomes.  相似文献   

19.
The sex chromosomes of Microtus agrestis are extremely large due to the accumulation of constitutive heterochromatin. We have identified two prominent satellite bands of 2.0 and 2.8 kb in length after HaeIII and HinfI restriction enzyme digestion of genomic DNA, respectively. These satellites are located on the heterochromatic long arm of the X chromosome as shown using Microtus x mouse somatic cell hybrids. By in-gel hybridization with oligonucleotide probes, the organization of the two satellites was studied: among the many copies of the simple tandem tetranucleotide repeat GATA are interspersed rare single GACA tetramers. One of the satellites also harbours related GGAT simple tandem repeats. In situ hybridizations with plasmid-carried or oligonucleotide GA C T A probes show clustered silver grains on the long and short arm of the X chromosome. Interspersion of differently organized (GATA)n elements is also demonstrable in the autosomal complement and on the Y chromosome. These results are discussed in the context of the evolution of vertebrate sex chromosomes in relation to heterochromatin and simple repetitive DNA sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号