首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the lipid-peroxidation product 4-hydroxynonenal on the formation of fluorescent chromolipids from microsomes, mitochondria and phospholipids were studied. Incubation of freshly prepared rat liver microsomes or mitochondria with 4-hydroxynonenal results in a slow formation of a fluorophore with an excitation maximum at 360 nm and an emission maximum at 430 nm. The rate and extent of the development of the 430 nm fluorescence can be significantly enhanced by ADP-iron (Fe3+). With microsomes, yet not with mitochondria. NADPH has a catalytic effect similar to that of ADP-iron. Fluorescent chromolipids with maximum excitation and emission at 360/430 nm are also formed during the NADPH-linked ADP-iron-stimulated lipid peroxidation. Phosphatidylethanolamine and phosphatidylserine react with 4-hydroxynonenal revealing a fluorophore with the same spectral characteristics as that obtained in the microsomal and mitochondrial system. The findings suggest that the fluorescent chromolipids formed by lipid peroxidation are not derived from malonaldehyde, but are formed from 4-hydroxynonenal or similar reactive aldehydes via a NADPH and/or ADP-iron-catalysed reaction with phosphatidylethanolamine and phosphatidylserine contained in the membrane.  相似文献   

2.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

3.
Microcolumn liquid and column chromatography technique is conjunction with UV-spectrophotometry and spectrofluorescent analysis were used to study lipid peroxidation products accumulated in human lenses during cataract formation by means of chromatographic separation in regard to the molecular weight and polarity properties. Cataract is characterized by the appearance of certain substances changing UV-absorption lipid spectra in the region of 230 and 274 nm and having special fluorescence (excitation--320-370 nm), (emission--405-460 nm). The same changes were observed by ultrasoundinduced lipid peroxidation of model lipid samples. The accumulated lipid peroxidation products are concentrated in the same chromatographic fractions that are responsible for the change of UV-absorption and fluorescent spectra of lipids of cataractous lenses. It is the evidence of free radical lipid peroxidation products accumulation in human lenses at cataract formation. Along with the formation of diene and triene conjugates in the lens lipids, cataract is characterized by the formation of cetodienes and of low molecular weight lipid fluorescent products of fatty acids oxidation with low polarity due to the appearance of tetraene derivatives of polyunsaturated fatty acids. The particular features of mature cataract are an increased intensity of long-wave lipid fluorescence in the blue-green region (430-460 nm) of the spectrum, formation of high molecular weight fluorescent lipid peroxidation products with high polarity, and smooth decrease in absorbance in the region of 220-330 nm. During cataract formation products of deep lipid peroxidation resulting from radical phospholipids and fatty acids polymerisation are accumulated. It is supposed that lipid peroxidation is an initial phase of membrane desintegration and formation of HMW-proteins in cataract.  相似文献   

4.
The standard assay for lipid peroxidation is the measurement of the pink, 532 n, absorbing chromogen which is formed upon reaction of 2-thiobarbituric acid (TBA) with the lipid peroxidation product malonaldehyde (MDA). The present studies indicate that the toxic lipid peroxidation product trans-4-hydroxynonenal and its dehydration product trans, trans-nonadienal react with TBA to form chromogens which absorb maximally at 530 and 532 nm, respectively. Other biologically active alpha, beta-unsaturated aldehydes, such as acrolein and crotonaldehyde, short-chain homologs of alkenals formed during lipid peroxidation, and trans,trans-muconaldehyde, a novel diene dialdehyde, react with TBA to form products which absorb maximally at 495 nm. The molar extinction coefficients of the aldehyde: TBA chromogens formed were found to vary widely, suggesting that only small contributions to the 532 nm absorption by TBA adducts of reactive aldehydes other than MDA may be encountered during the use of the TBA assay.  相似文献   

5.
When mouse peritoneal macrophages as well as P388D1 cells, an established macrophage-like cell line, were cultured with liposomes composed of rat liver phosphatidylcholine and phosphatidylserine, storage of fluorescent products, ceroid-like pigments, within those cells was observed with light and fluorescence microscopy, and fluorescence spectrophotometry. The amounts of thiobarbituric acid-reactive substances and fluorescent products in macrophages were increased gradually to reach a maximal level to between 6 and 8 days of culture. The involvement of peroxidation of liposomal lipids in the formation of the pigments was further suggested by the 6 days that incorporation of alpha-tocopherol into liposomes decreased the storage of the pigments. No appreciable formation of the pigments was observed in macrophages cultured with liposomes containing dipalmitoylphosphatidylcholine instead of rat liver phosphatidylcholine. The fluorescent products formed in cultured cells were found in lipid-soluble and -insoluble fractions. Lipid-insoluble fluorescent products had an excitation maximum at 360 nm and a fluorescence maximum at 430 nm in SDS-aqueous solution (pH 7.4) and the intensity of the fluorescence was quenched at base pH, but it was not changed in acidic media. These findings indicate that the macrophages can store Schiff base fluorescent substances formed by the reaction between peroxidation products of exogenous lipids and amino compounds in the cells, under some pathological conditions.  相似文献   

6.
The formation of age pigment-like fluorescent substances during the lipid peroxidation of model membranes has been studied. Ferrous ion and ascorbate-induced lipid peroxidation of liposomal membranes containing phosphatidylethanolamine led to the formation of fluorescent substances which have characteristics similar to those of compounds derived from the reaction of phosphatidylethanolamine with purified fatty acid hydroperoxides. The fluorescent substances were accumulated in liposomal membranes, whereas thiobarbituric acid-reactive substances formed during lipid preoxidation were immediately released from the liposomal membranes. The thiobarbituric acid-reactive substances free from the membranes were not reactive with amino compounds such as phosphatidylethanolamine in liposomes or glycine in aqueous phase. It was suggested that the products reacting with amino compounds are short-lived, and may be rapidly inactivated after released into aqueous phase. The formation of fluorescent products was inefficient when phosphatidylethanolamine incorporated into the liposomes insensitive to lipid preoxidation was incubated with ferrous ion and ascorbate in the presence of liposomes sensitive to the peroxidation. The results suggest that some products generated from peroxidation-sensitive lipids react with the amino group of phosphatidylethanolamine molecules which are located on the same membranes, forming fluorescent substances. The presence of phosphatidylethanolamine in the membrane suppressed the formation of thiobarbituric acid-reactive substances, suggesting that phosphatidylethanolamine may react with radicals formed and terminate the propagation.  相似文献   

7.
T Iio  K Yoden 《Life sciences》1987,40(24):2297-2302
Secondary oxidative products of autoxidized methyl linoleate were divided into three groups (SP-I, SP-II and SP-III), which were then compared as to their abilities to form fluorescent substances and to degrade heme. SP-III showed a marked ability to produce two fluorescent substances exhibiting an excitation maximum at 350-360 nm and an emission maximum at 410-430 nm, while SP-I showed a more strongly degradative effect on heme than SP-III. The heme degradation was observed in parallel with the changes of TBA value in an early stage of lipid peroxidation and the fluorescence formation markedly increased according to the decrease of TBA value in a later stage. The results suggested that there are different reactive substances which bring about fluorescence formation and heme degradation and that they are produced at different stages of lipid peroxidation.  相似文献   

8.
用荧光探剂ANS对抗旱性不同的甘蔗品种在水分胁迫下叶片线粒体膜流动性的变化进行的研究表明,水分胁迫降低了线粒体膜的流动性,抗旱性强的甘蔗品种Co 617和F.Y.79-9的下降幅度分别小于抗旱性弱的Co 740和M.T.77-208;水分胁迫下线粒体膜流动性的下降与膜脂过氧化产物丙二醛含量的增加有密切关系。外源自由基处理试验也表明,甘蔗叶片线粒体膜流动性的下降与膜脂过氧化作用有关。  相似文献   

9.
Liposome suspension prepared from the unsaturated phospholipids exposed to lipid peroxidation (LPO) induced posterior subcapsular cataracts after injection into the posterior vitreous of rabbit eyes. In the background of this model lies a type of lens opacity formed during retinal degeneration when toxic peroxide substances diffuse anteriorly through the vitreous body resulting in vitreous opacities and complicated cataracts. Saturated liposomes (prepared from beta-oleoyl-gamma-palmitoyl) L-alpha-lecithin) did not induce lens opacities, which is the evidence that a lipid peroxidation mechanism may be responsible for the posterior cataracts. Along with cataract formation accumulation of LPO fluorescent products in vitreous, aqueous humor and lens was observed. It was followed by a decreased level of reduced glutathione in the lens. The obtained results strongly support the hypothesis of LPO initial role in cataracts.  相似文献   

10.
Mitochondrial oxidative damage contributes to a wide range of pathologies, and lipid peroxidation of the mitochondrial inner membrane is a major component of this disruption. However, despite its importance, there are no methods to assess mitochondrial lipid peroxidation within cells specifically. To address this unmet need we have developed a ratiometric, fluorescent, mitochondria-targeted lipid peroxidation probe, MitoPerOx. This compound is derived from the C11-BODIPY(581/591) probe, which contains a boron dipyromethane difluoride (BODIPY) fluorophore conjugated via a dienyl link to a phenyl group. In response to lipid peroxidation the fluorescence emission maximum shifts from ~590 to ~520nm. To target this probe to the matrix-facing surface of the mitochondrial inner membrane we attached a triphenylphosphonium lipophilic cation, which leads to its selective uptake into mitochondria in cells, driven by the mitochondrial membrane potential. Here we report on the development and characterization of MitoPerOx. We found that MitoPerOx was taken up very rapidly into mitochondria within cells, where it responded to changes in mitochondrial lipid peroxidation that could be measured by fluorimetry, confocal microscopy, and epifluorescence live cell imaging. Importantly, the peroxidation-sensitive change in fluorescence at 520nm relative to that at 590nm enabled the use of the probe as a ratiometric fluorescent probe, greatly facilitating assessment of mitochondrial lipid peroxidation in cells.  相似文献   

11.
Lipofuscin and lipofuscin-like substances   总被引:5,自引:0,他引:5  
Lipofuscin is defined as being a yellowish brown, lipid-rich, heterogeneous, cytoplasmic granular pigment emitting an intense yellow autofluorescence when excited with ultraviolet light, which accumulates in various tissues of animals during their aging. It is believed that the pigments are derived from the reaction of some of reactive secondary products including malonaldehyde, formed during membranous lipid peroxidation, with amino groups of phospholipids and proteins, etc., and that these formations are accompanied by alteration of the membrane structure and inactivation of the enzymes. The fluorescence measurement of the pigments is widely used as a parameter of lipid peroxidation in vivo as well as in vitro. However, their origin, chemical structure, biological significance or fate has not as yet been fully elucidated. This article introduces and discusses the recent studies on these problems.  相似文献   

12.
V V Konev  G A Popov 《Biofizika》1978,23(3):456-461
The rate of fluorescent product formation during the peroxidation of polyunsaturated linolenic acid or egg phosphatidylethanolamine and also during the oxidation of linolenic acid together with a phenylalanine and synthetic phosphatidylethanolamine 1,5--3 times more intensive after previous UV-irradiation of the unsaturated fatty acid. Schiff bases are fluorescent products in amine containing systems which are produced in the reaction of the malonaldehyde with amines. It is possible that fluorochromes produced during the only unsaturated acid oxidation are the result of the radical recombination. Accumulation of the oxidated products determined by TBA-reactive substances does not inevitably correlate with the fluorescent intensity in explored systems.  相似文献   

13.
We have shown previously that ischemia results in reactive oxygen species production by lung endothelium that occurs within 3-5 s after flow cessation and is followed by lipid peroxidation at 15-30 min as determined by assay of thiobarbituric acid-reactive substances, conjugated dienes, and protein carbonyls in lung homogenate. The present study evaluated membrane lipid peroxidation in isolated, ventilated rat lungs using a fluorescence imaging method that permits continuous observation of pulmonary subpleural microvascular endothelial cells in situ. Diphenyl-1-pyrenylphosphine (DPPP), a fluorescent probe which localizes in the plasma membrane and shows increased fluorescence emission after its oxidation by lipid hydroperoxides, was used for detection of membrane lipid peroxidation. Compared to continuously perfused control lungs, endothelial cell DPPP fluorescence increased significantly within 1 min of ischemia (i.e., flow cessation); these changes were prevented by pretreatment with 0.5 mM alpha-tocopherol succinate (vitamin E) added to the perfusate. Increased DPPP fluorescence was confirmed by spectrofluorometry of lipid extracts of lung homogenates. These data indicate that DPPP can be used for the real-time detection of lipid peroxidation in an intact organ. Ischemia results in peroxidation of the pulmonary microvascular endothelial cell membrane and this insult can be detected as early as 1 min after the onset of ischemia compatible with a radical-mediated process.  相似文献   

14.
Fluorescence emitted from microsomal membranes by lipid peroxidation   总被引:1,自引:0,他引:1  
The fluorescence emitted from rat liver microsomal membranes which had undergone enzymatic and nonenzymatic lipid peroxidation was detected directly. This fluorescence produced in peroxidized membranes increased progressively with peroxidation reaction time, and the fluorescent substances produced were retained in the membranes without being released into the aqueous phase. Extracts of the peroxidized membranes with organic solvents (chloroform/methanol) emitted fluorescence which was also dependent on the peroxidation reaction time. The generation profiles of fluorescence emitted from both the peroxidized membranes and their extracted membrane lipids differed essentially from that of thiobarbituric acid-reactive substances which reached a plateau at a relatively early stage of peroxidation reaction. These results indicate that lipid peroxidation induces stepwise chemical and physical changes in membranes and that the fluorescence from peroxidized membranes will be useful in studying such changes occurring in biological membranes.  相似文献   

15.
The interaction of lipid hydroperoxides and secondary oxidation products with DNA was investigated by evaluating the fluorescence formed in the presence of metals and reducing agents. We also investigated the effect of malonaldehyde, because it has been generally considered responsible for the formation of fluorescence with DNA. However, malonaldehyde usually has been estimated by the notoriously unspecific thiobarbituric acid test. At low concentration of oxidation products (1 mM), fluorescence formation required the presence of metals and ascorbic acid. In contrast, a positive thiobarbituric acid reaction was obtained with many lipid oxidation products without metals or ascorbic acid. Monohydroperoxides from autoxidized methyl linoleate and linolenate produced the highest level of fluorescence. Hydroperoxy epidioxides of linolenate and dihydroperoxides of linoleate and linolenate were among the most active secondary products in forming fluorescence with DNA. In contrast, malonaldehyde produced very little fluorescence under our conditions. The thiobarbituric acid values did not correlate with fluorescence formation. This study showed that, in our model reaction system, DNA forms fluorescent products by the breakdown of lipid oxidation products in the presence of metals and ascorbic acid into reactive materials other than malonaldehyde. Therefore, the importance of malonaldehyde in its crosslinking properties with DNA may have been exaggerated in the literature.  相似文献   

16.
Age-related fluorescent and cross-linked proteins increase with lipid oxidation of tissues. The fluorophores and cross-links have been considered to be conjugated Schiff bases between amino groups of proteins and malonaldehyde. Our recent studies showed that the fluorophores produced in the in vitro reaction of proteins with malonaldehyde are 1,4-dihydropyridine-3,5-dicarbaldehydes, whose fluorescence characteristics are similar to but not always the same as those of the age-related fluorescent substances, and that the cross-linking is due to less fluorescent conjugated Schiff bases. The in vitro reaction of proteins with oxidized lipids produces fluorescent and cross-linked proteins similar to those in the aging cells or tissues. Monofunctional aldehydes such as alkanals, alk-2-enals and alka-2,4-dienals can also participate in the formation of the fluorophores and cross-links. The fluorescent substances produced from the reaction of primary amines or proteins with these aldehydes showed spectra close to those of the age-related fluorescent substances.  相似文献   

17.
A W Girotti 《Biochemistry》1975,14(15):3377-3383
The photodynamic action of bilirubin on isolated human erythrocyte membranes (ghosts) has been studied. When incorporated into ghosts (pH 8.0,10 degrees) the bile pigment photosensitizes in blue light the peroxidation of unsaturated lipids, as evidenced by a positive color reaction with 2-thiobarbituric acid. Accompanying lipid peroxidation was the disappearance of most of the major membrane proteins (Coomassie Blue staining in sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and appearance of polypeptide photoproducts of greater size (mol wt greater than 250,000). The association of membrane proteins (presumably by cross-linking) was insignificant when bilirubin-ghost suspensions were kept in the dark, or when ghosts were irradiated in the absence of bilirubin. Electrophoretic bands 1 and 2 (Fairbanks, G., Steck, T.L., and Wallach, D. F.H (1971), Biochemistry 10, 2606) diminished rapidly during the photoreaction, whereas band 3 and the three sialoglycoproteins disappeared at a much slower rate. Dispersal of membrane consituents by treatment with sodium dodecyl sulfate prior to irradiation resulted in relatively little peroxidation and no noticeable formation of high molecular weight polypeptide complexes. The possibility that malonaldehyde, a product of lipid peroxidation, is involved in cross-linking during irradiation was studied by incubating ghosts with exogenous malonaldehyde. Although the reagent did cross-link membrane proteins (electrophoretic bands 1, 2, 2.1 2.2, and 4.1 diminished most rapidly and high molecular weight bands appeared), the reaction could only be demonstrated with malonaldehyde concentrations several orders of magnitude greater than those detected in irradiation experiments. If malonaldehyde cross-linking occurs, it does not appeare to be the predominant mechanism of polypeptide association during irradiation of bilirubin-containing ghosts.  相似文献   

18.
The interaction of 3-phosphoglycerate kinase from bovine heart with natural phosphatidylserine (I) and synthetic dipalmitoyl phosphatidylserine (II) in form of liposomes was investigated by measuring fluorescence and activity of the enzyme. The addition of increasing amounts of I resulted in progressive quenching of protein fluorescence with no shift in the emission maximum. In contrast, II did not cause any change in the fluorescence. In the presence of low amounts of I and II (lipid/protein molar ratio 10-40) full enzymatic activity of 3-phosphoglycerate kinase was observed even after 80 min of incubation, whereas without phospholipids the activity considerably decreased. At higher lipid concentrations I strongly inactivated the enzyme and the inactivation by II was only insignificant. It was concluded that the phospholipid membrane protects the enzyme against thermal denaturation, whereas the inactivation is mainly due to phospholipid impurities.  相似文献   

19.
A method for in vivo evaluation of lipid peroxidation in the extracellular space of anaesthetized rat brain cortex was developed. This method involved the use of microdialysis perfusion and high-performance liquid chromatography. The microdialysates, eluted from implanted probes, were reacted with thiobarbituric acid (TBA) prior to analysis by an HPLC system equipped with a fluorescence detector (excitation and emission wavelengths were 515 and 550 nm, respectively). Lipid peroxidation in the extracellular space was evaluated as the concentration of malondialdehyde, a lipid peroxidation end product which reacts with TBA to form a fluorescent conjugate. Significantly increased production of malondialdehyde following hydrogen peroxide perfusion (0.03%, 0.3% at a flow-rate of 1 μl/min) was observed in the brain cortex of anaesthetized rats.  相似文献   

20.
Treatment with FeSO(4)/EDTA (0.2 micromol Fe(II) per mg of protein) was used to study the effect of oxidative stress on lipid peroxidation and structural properties of endoplasmic reticulum (ER) membranes isolated from rabbit brain. Oxidative stress resulted in conjugated diene formation and a decrease of 1-anilino-8-naphthalenesulfonate (ANS) fluorescence in a time-dependent manner. In contrast, fluorescence anisotropy of 1, 6-diphenyl-1,3,5-hexatriene was increased early after the initiation of lipid peroxidation and no further increase was observed after 1, 2 and 3 h of peroxidation. FeSO(4)/EDTA treatment was accompanied by formation of conjugates of lipid peroxidation products with membrane proteins, as detected by the increase in fluorescence excitation (350-360 nm) and emission (440-450 nm) maximum. Oxidative stress also induced a marked decrease of the intrinsic fluorescence of aromatic amino acids, suggesting modification or changes in the environment of these amino acid residue(s). The lipid antioxidant, stobadine, completely prevented the changes of ANS fluorescence and production of peroxidized lipid-protein conjugates whereas tryptophan fluorescence was only partially protected. These results suggest that Fe(II) induces both lipid-mediated- and lipid peroxidation independent-modification of ER membrane proteins. The study also demonstrates that stobadine is a potent inhibitor of Fe(II)-induced protein modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号