首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

2.
Summary The high basal glucose utilization through hexose monophosphate shunt found in our experimental conditions were almost completely inhibited by oleate, octanoate and caproate. However, the inhibition of glucose oxidation due to butyrate was about 50% whereas ketone bodies and acetate did not inhibit. The rate of triacylglycerol formation was not significantly modified with the above organic acids except oleate that presented a 5-fold increase on labeling incorporation into lipids. Oleate inhibition of glucose oxidation was completely prevented by the NADPH oxidant menadione. There was no inhibition by octanoate, caproate, butyrate or ketone bodies of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase or malic enzyme in adipose tissue homogenates. In contrast, specifically glucose-6-phosphate dehydrogenase was inhibited by oleoyl-CoA. The oleoyl-CoA inhibition was prevented by enzyme preincubation with low NADP concentration. The data lend further support for the hypothesis that fatty acids and NADP fulfill an important role in the modulation of the hexose monophosphate shunt activity.  相似文献   

3.
Estradiol treatment modified the metabolic responses of fasted rat hepatocytes to exogenous glucose with respect to glucose utilization and cytosolic NADPH-generating enzymes. The estrogen abolished the glucose-stimulated gluconeogenic capacity displayed by control rat cells while promoting a net uptake of exogenous glucose and enhancing the glucose-6-phosphate dehydrogenase activity. Estradiol also caused an increase in the activity of the isocitrate dehydrogenase that may be related to the enhanced needs of NADPH by hepatocytes for steroid hormone catabolism.  相似文献   

4.
Using primary cultures of adult rat hepatocytes, the regulation of the following lipogenic enzymes was studied: glucose-6-phosphate dehydrogenase, malic enzyme, ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase, and stearoyl-CoA desaturase. The addition to the culture medium of either insulin or triiodothyronine produced a 2-3-fold increase in each of the individual enzyme activities whereas glucagon slightly decreased enzyme activities. The addition to the medium of 8-bromoguanosine 3,'5'-monophosphate had no effect on any of the enzyme activities unless glucose was also added to the culture medium. Glucose addition alone to the culture medium was without any effect; however, glucose enhanced the stimulation of enzyme activity due to insulin. The addition of fructose or glycerol, even in the absence of insulin, increased the activities of each of the enzymes studied 2-3-fold. The increases in enzyme activity brought about by insulin or fructose were apparently the result of de novo enzyme synthesis, as indicated by the observation that the increases were not noted in the presence of cordycepin or cycloheximide. Immunoprecipitation of ATP-citrate lyase from hepatocytes pulse-labeled with [3H]leucine indicated that the induction of this enzyme in response to the addition of fructose or glycerol to the culture medium was the result of an increase in the rate of synthesis of the enzyme. These results indicate that the activity and synthesis of individual enzymes involved in lipogenesis are increased in response to the metabolism of carbohydrate independently in part from hormonal effects.  相似文献   

5.
1. The effect of a redox cycler and arylator (menadione) and a pure arylator quinone (benzoquinone) was studied on different NADPH generating and consuming processes in isolated mouse hepatocytes. 2. Menadione inhibited gluconeogenesis from alanine but not from fructose or glycerol. 3. Drug oxidation measured as aniline hydroxylation and aminopyrine N-demethylation could be inhibited by menadione in microsomal membrane and in isolated hepatocytes both from fed or fasted animals. 4. Ureogenesis in isolated hepatocytes from fed mice could not be inhibited even by high concentration of menadione, while in cells from fasted animals menadione was inhibitory at high concentration in the presence of gluconeogenic precursor and at lower concentration in the absence of it. 5. Benzoquinone did not inhibit the above mentioned processes.  相似文献   

6.
Hepatic metabolites and enzymes in the marine fish, scup or porgy (Stenotomus chrysops), were determined in freeze-clamped tissue taken either within a day of removing fish from their natural habitat or after scup were held in captivity for 6-8 months. The same determinations were made for liver from fed or 48 hr-starved rats (Mus norvegicus albinus). Compared with rat liver, both groups of fish had, per gram of liver, higher contents of AMP, inorganic phosphate, glucose, glucose-6-phosphate, malate, glutamate and NH4+. ATP was lower in fish liver, and ADP, lactate and pyruvate contents were similar in rats and fish. Fish held in captivity had significantly lower pyruvate, alpha-ketoglutarate, and cytosolic free NAD+/NADH and higher cytosolic free NADPH/NADP+. These decreases were similar to those seen when starved rats were compared with fed ones. In scup liver, glucose-6-phosphate dehydrogenase was 3-8 times, malic enzyme about 2 times, and alanine aminotransferase 2-4 times higher than those activities in rat liver. Those results and a higher cytosolic free NADPH/NADP+ are consistent with the liver being the major site of lipogenesis in fish.  相似文献   

7.
Summary P-Chloromercuribenzoate alters various reactions of rat liver glucose (hexose phosphate) dehydrogenase differently. The reagent has little effect on the glucose: NAD or the glucose: NADP oxidoreductases, doubles the rates of oxidations of galactose-6-phosphate and glucose-6-phosphate by NADP and greatly stimulates the oxidations of glucose-6-phosphate and galactose-6-phosphate by NAD. The reagent appears to react with a sulfhydryl group of the enzyme since activation is reversed and prevented by mercaptoethanol. The direct reaction of the reagent with the enzyme is indicated by its lower thermal stability in the presence of the p-chloromercuribenzoate. The size of the enzyme appears to be the same when determined by sucrose gradient centrifugation in the presence or absence of p-chloromercuribenzoate. In microsomes, the oxidation of NADH or NADPH hampers measurements of glucose dehydrogenase. Since p-chloromercuribenzoate inhibits microsomal oxidation of reduced nicontinamide nucleotides, it is possible to assay for glucose dehydrogenase accurately in the presence of the mercurial in microsomes and microsomal extracts and thus measure the effectiveness of a detergent in extracting the enzyme from microsomes.Abbreviation pcMB p-chloromercuribenzoic acid  相似文献   

8.
1. The effect of increased ureogenesis--provoked by NH4Cl and ornithine--on gluconeogenesis and aminopyrine oxidation was studied in isolated hepatocytes prepared from 24 hr starved mice; lactate or fructose was used as gluconeogenic precursor. 2. Increased ureogenesis caused about 40% inhibition both on aminopyrine oxidation and gluconeogenesis when lactate was added as gluconeogenic substrate. 3. On the other hand, only 10% inhibition of aminopyrine oxidation and about 15% inhibition of gluconeogenesis were observed when fructose was used as gluconeogenic precursor. 4. Aminopyrine has been reported to inhibit gluconeogenesis from fructose by 30% and from lactate by 85%. The inhibitory effect of the combined addition of aminopyrine, NH4Cl and ornithine on gluconeogenesis was also dependent on the applied gluconeogenic precursor. 5. The provoked ureogenesis by ammonia and ornithine was not inhibited by aminopyrine. N6, O2-dibutyryl cAMP known to cause an increase of gluconeogenesis a decrease of aminopyrine oxidation enhanced the inhibitory action of increased ureogenesis on aminopyrine oxidation and on gluconeogenesis further. 6. The role of NADPH in the regulation of drug oxidation and ureogenesis is underlined.  相似文献   

9.
Summary In the metabolism of fructose by Zymomonas, the ethanol yield is decreased due to the formation of dihydroxyacetone, mannitol and glycerol. The reduction of fructose to mannitol by an NADPH-dependent mannitol dehydrogenase is apparently coupled to the oxidation of glucose-6-phosphate by glucose-6-phosphate dehydrogenase, which exhibits higher activity with NADP than with NAD as cofactor. The relatively low cell yield on fructose can partly be explained by the loss of ATP in the formation of dihydroxyacetone and glycerol and partly by the toxic effect of dihydroxyacetone and acetaldehyde on the growth of the organism.  相似文献   

10.
1. Adipose tissues from rats fed a balanced diet were incubated in the presence of glucose (20mm) with the following additions: insulin, anti-insulin serum, insulin+acetate, insulin+pyruvate, insulin+lactate, insulin+phenazine methosulphate, insulin+oleate+albumin, insulin+adrenaline+albumin, insulin+6-N-2'-O-dibutyryl 3':5'-cyclic AMP+albumin. 2. Measurements were made of the whole tissue concentrations of adenine nucleotides, hexose phosphates, triose phosphates, glycerol 1-phosphate, 3 phosphoglycerate, 6-phosphogluconate, long-chain fatty acyl-CoA, acid-soluble CoA, citrate, isocitrate, malate and 2-oxoglutarate, and of the release into the incubation medium of lactate, pyruvate and glycerol after 1h of incubation. 3. Fluxes of [(14)C]glucose carbon through the major pathways of glucose metabolism were calculated from the yields of (14)C in various products after 2h of incubation. Fluxes of [(14)C]acetate, [(14)C]pyruvate or [(14)C]lactate carbon in the presence of glucose were also determined. 4. Measurements were also made of the whole-tissue concentrations of metabolites in tissues taken directly from Nembutal-anaesthetized rats. 5. Whole tissue mass-action ratios for phosphofructokinase, phosphoglucose isomerase and the combined (aldolasextriose phosphate isomerase) reaction were similar in vivo and in vitro. The reactants of phosphofructokinase appeared to be far from mass-action equilibrium. In vitro, the reactants of hexokinase also appeared to be far from mass-action equilibrium. 6. Correlation of observed changes in glycolytic flux with changes in fructose 6-phosphate concentration suggested that phosphofructokinase may show regulatory behaviour. The enzyme appeared to be activated in the presence of oleate or adrenaline and to be inhibited in the presence of lactate or pyruvate. 7. Evidence is presented that the reactants of lactate dehydrogenase and glycerol 1-phosphate dehydrogenase may be near to mass-action equilibrium in the cytoplasm. 8. No satisfactory correlations could be drawn between the whole-tissue concentrations of long-chain fatty acyl-CoA, citrate and glycerol 1-phosphate and the observed rates of triglyceride and fatty acid synthesis. Under the conditions employed, the concentration of glycerol 1-phosphate appeared to depend mainly on the cytoplasmic [NAD(+)]/[NADH] ratios. 9. Calculated hexose monophosphate pathway flux rates roughly correlated with fatty acid synthesis rates and with whole tissue [6-phosphogluconate]/[glucose 6-phosphate] ratios. The relative rates of production of NADPH for fatty acid synthesis by the hexose monophosphate pathway and by the ;malic enzyme' are discussed. It is suggested that all NADH produced in the cytoplasm may be used in that compartment for reductive synthesis of fatty acids, lactate or glycerol 1-phosphate.  相似文献   

11.
Placental aldose reductase (EC 1.1.1.21) was incubated with glucose in the presence of [4A-2H] NADPH prepared in the oxidation of [2-2H] isocitrate by isocitrate dehydrogenase (EC 1.1.1.42) or [4B-2H] NADPH prepared in the oxidation of [1-2H] glucose-6-phosphate dehydrogenase (EC 1.1.1.49). The sorbitol formed from [4A-2H] NADPH contained deuterium and from [4B-2H] NADPH it did not. Therefore, aldose reductase in an A-type enzyme.  相似文献   

12.
Differences in cofactor (NADPH and UDP-glucuronic acid) supply for various processes of biotransformation were studied by investigating the interrelations between glucose production (gluconeogenesis and glycogenolysis) and drug (p-nitrophenol, aminopyrine, phenolphthalein) biotransformation (hydroxylation and conjugation) in isolated murine hepatocytes. In glycogen-depleted hepatocytes prepared from animals fasted for 48 h (i) p-nitrophenol conjugation was decreased by 80% compared to the fed control, while aminopyrine oxidation was unaltered, (ii) addition of glucose or gluconeogenic substrates failed to increase the rate of p-nitrophenol conjugation, while the rate of p-nitrophenol and also aminopyrine oxidation was increased and (iii) gluconeogenesis was inhibited by 80% by aminopyrine oxidation: it was moderately decreased by p-nitrophenol oxidation and conjugation and remained unchanged by phenolphthalein conjugation. In hepatocytes prepared from fed mice (i) p-nitrophenol conjugation was independent of the extracellular glucose concentration, (ii) it was linked to the consumption of glycogen - addition of fructose inhibited p-nitrophenol glucuronidation only, while sulfation was unaltered and (iii) p-nitrophenol oxidation was not detectable: aminopyrine oxidation was not affected by fructose addition. It is suggested that UDP-glucuronic acid for glucuronidation derives predominantly from glycogen, while the NADPH generation for mixed function oxidation is linked to glucose uptake and / or gluconeogenesis in the liver.  相似文献   

13.
The induction of NADPH-generating enzymes by polychlorinated biphenyls (PCB) in rats was investigated. The administration of PCB to rats for 3 and 14 days increased the activities of malic enzyme (ME, EC 1.1.1.40), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44) about 2-fold above the control level in the liver. Hepatic mRNA levels of ME, G6PD, and 6PGD, except for G6PD mRNA of the 14-day group, were also elevated to the same degree as the enzyme activities in PCB-treated rats. In rats fed a PCB-containing diet for 1 day, the hepatic mRNA levels of ME and G6PD were elevated prior to the induction of enzyme activity. In the kidney, lung, spleen, heart, and testis, the mRNA levels of ME, G6PD, and 6PGD were not affected by PCB. The induction of hepatic NADPH-generating enzymes would imply an increased demand of NADPH in the liver of rats fed with a PCB-containing diet.  相似文献   

14.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

15.
Circadian rhythms play a very important role on metabolic process and have considerable effects on growth, especially in ectotherms. Like variation in hormone levels, the sensitivity of target cells may show diurnal or seasonal fluctuations. The aim of this study was to compare the effects of morning versus evening injections of growth hormone and prolactin on malic enzyme, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, aspartate aminotransferase, alanine aminotransferase and Na+,K+-ATPase in a teleost Anabas testudineus. Activities of malic enzyme, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase of the two control groups themselves differ significantly at morning and evening. Early morning administration of growth hormone increases malic enzyme, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase activities while evening administration of growth hormone does not effect these enzymes. Transaminase activities were stimulated by morning and evening administration of GH and PRL. Na+,K+-ATPase activity was stimulated by morning administration and inhibited by evening treatment of both hormones. The results reveal that a given hormone may provide a different message to the target tissues at different periods of the day.  相似文献   

16.
Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.  相似文献   

17.
Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.  相似文献   

18.
The organ specificity of creatine kinase, esterase, isocitrate dehydrogenase lactate dehydrogenase, nucleoside phosphorylase, adenylate kinase, hexokinase, malate dehydrogenase, malic enzyme, glucose-6-phosphate dehydrogenase of black-white cattle has been studied. Esterases, creatine kinase, adenylate kinase, hexokinase and glucose-6-phosphate dehydrogenase have a very wide spectrum of the organ variabilities. Liver and heart have the largest specificity of enzymes activity. Some peculiarities of isozyme spectrum are found in ovaries and spleen.  相似文献   

19.
Lipid synthesis from acetate-1-(14)C by rat skin was inhibited 44-56% by 2.5 x 10(-4) m dehydroepiandrosterone (DHA) in vitro with or without addition of glucose in the incubation medium. This inhibition affected all the lipid fractions examined (hydrocarbons, sterols, sterol esters, tri-, di- and monoglycerides, fatty acids, and polar lipids) and could be reversed by NADPH. DHA also inhibited lipid synthesis from glucose-U-(14)C and the formation of (14)CO(2) from glucose-1-(14)C, indicating interference with pentose cycle activity. Experiments with the 105,000 g supernatant fluid of rat skin homogenates demonstrated considerable activities of malic enzyme (ME) (12.6 nmoles of NADPH generated per min per mg of protein), of glucose-6-phosphate dehydrogenase (G6PD), and of 6-phosphogluconate dehydrogenase (6PGD) (17.5 nmoles of NADPH generated per min per mg of protein). G6PD was inhibited 98% by 2.5 x 10(-4) m dehydroepiandrosterone, while 6PGD and ME were not affected. It can be estimated from these data that the pentose cycle may contribute 41-57% of the NADPH needed for lipid synthesis in rat skin; the remainder of the necessary NADPH is presumably supplied by malic enzyme.  相似文献   

20.
The ability of a microsomal enzyme, glucose dehydrogenase (hexose 6-phosphate dehydrogenease) to supply NADPH to the microsomal electron transport system, was investigated. Microsomes could perform oxidative demethylation of aminopyrine using microsomal glucose dehydrogenase in situ as an NADPH generator. This demethylation reaction had apparent Km values of 2.61 X 10(-5) M for NADP+, 4.93 X 10(-5) m for glucose 6-phosphate, and 2.14 X 10(-4) m for 2-deoxyglucose 6-phosphate, a synthetic substrate for glucose dehydrogenase. Phenobarbital treatment enhanced this demethylation activity more markedly than glucose dehydrogenase activity itself. Latent activity of glucose dehydrogenase in intact microsomes could be detected by using inhibitors of microsomal electron transport, i.e. carbon monoxide and p-chloromercuribenzoate (PCMB), and under anaerobic conditions. These observations indicate that in microsomes the NADPH generated by glucose dehydrogenase is immediately oxidized by NADPH-cytochrome c reductase, and that glucose dehydrogenase may be functioning to supply NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号