首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50 = 1.18–8.01 μg/mL) and PTP1B (IC50 = 0.85–8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50 = 0.93 μg/mL) and oleanolic acid (IC50 = 0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor.  相似文献   

2.
Protein-tyrosine phosphatases (PTPs) are important signaling enzymes that have emerged within the last decade as a new class of drug targets. It has previously been shown that suramin is a potent, reversible, and competitive inhibitor of PTP1B and Yersinia PTP (YopH). We therefore screened 45 suramin analogs against a panel of seven PTPs, including PTP1B, YopH, CD45, Cdc25A, VHR, PTPalpha, and LAR, to identify compounds with improved potency and specificity. Of the 45 compounds, we found 11 to have inhibitory potency comparable or significantly improved relative to suramin. We also found suramin to be a potent inhibitor (IC(50) = 1.5 microm) of Cdc25A, a phosphatase that mediates cell cycle progression and a potential target for cancer therapy. In addition we also found three other compounds, NF201, NF336, and NF339, to be potent (IC(50) < 5 microm) and specific (at least 20-30-fold specificity with respect to the other human PTPs tested) inhibitors of Cdc25A. Significantly, we found two potent and specific inhibitors, NF250 and NF290, for YopH, the phosphatase that is an essential virulence factor for bubonic plague. Two of the compounds tested, NF504 and NF506, had significantly improved potency as PTP inhibitors for all phosphatases tested except for LAR and PTPalpha. Surprisingly, we found that a significant number of these compounds activated the receptor-like phosphatases, PTPalpha and LAR. In further characterizing this activation phenomenon, we reveal a novel role for the membrane-distal cytoplasmic PTP domain (D2) of PTPalpha: the direct intramolecular regulation of the activity of the membrane-proximal cytoplasmic PTP domain (D1). Binding of certain of these compounds to PTPalpha disrupts D1-D2 basal state contacts and allows new contacts to occur between D1 and D2, which activates D1 by as much as 12-14-fold when these contacts are optimized.  相似文献   

3.
We describe herein the design, synthesis, and biological evaluation of a series of novel protein tyrosine phosphatase 1B (PTP1B) inhibitor retrochalcones having an allyl chain at the C-5 position of their B ring. Biological screening results showed that the majority of these compounds exhibited an inhibitory activity against PTP1B. Thus, preliminary structure-activity relationship (SAR) and quantitative SAR analyses were conducted. Among the compounds, 23 was the most potent inhibitor, exhibiting the highest in vitro inhibitory activity against PTP1B with an IC50 of 0.57?µM. Moreover, it displayed a significant hepatoprotective property via activation of the IR pathway in type 2 diabetic db/db mice. In addition, the results of our docking study showed that 23, as a specific inhibitor of PTP1B, effectively transformed the WPD loop from “close” to “open” in the active site. These results may reveal suitable compounds for the development of PTP1B inhibitors.  相似文献   

4.
Ohioensins F and G (1 and 2), two new benzonaphthoxanthenones, have been isolated from the MeOH extract of Antarctic moss Polytrichastrum alpinum by various chromatographic methods. The structures of these compounds were determined mainly by analysis of NMR spectroscopic data. The known compounds ohioensins A and C (3 and 4) were also obtained. Compounds 1-4 showed potent inhibitory activity against therapeutically targeted protein tyrosine phosphatase 1B (PTP1B). Kinetic analysis of PTP1B inhibition by ohioensin F (1) suggested that benzonaphthoxanthenones inhibited PTP1B activity in a non-competitive manner.  相似文献   

5.
Some simplified adociaquinone B analogs and a series of 1,4-naphthoquinone derivatives were synthesized and tested against the three enzymes Cdc25B, MKP-1, and MKP-3. Cdc25B and MKP-1 in particular are enzymes overexpressed in human cancer cells, and they represent potential molecular targets for novel cancer chemotherapeutic treatments. A number of analogs exhibited significant inhibitory activity against these enzymes, and the bioassay data in addition to structure–activity relationships of these compounds will be discussed.  相似文献   

6.
Dual specificity protein phosphatases (DSPases) are key regulators of signal transduction, oncogenesis and the cell cycle. Few potent or specific inhibitors of DSPases, however, are readily available for these pharmacological targets. We have used a combinatorial/parallel synthetic approach to rigidify the variable core region and modify the side chains of 4-(benzyl-(2-[2,5-diphenyl-oxazole-4-carbonyl)-amino]-ethyl)-carbamoyl)- 2-decanoylamino butyric acid (or SC-alphaalphadelta9), which is the most active element in a previously described library of phosphatase inhibitors (Rice, R. L.; Rusnak, J. M.; Yokokawa, F.; Yokokawa, S.; Messner, D. J.; Boynton, A. L.; Wipf, P.; Lazo, J. S. Biochemistry 1997, 36, 15965). Several analogues were identified as effective inhibitors of the protein tyrosine phosphatase (PTPase) PTP1B and the DSPases VHR and Cdc25B2. Two compounds, FY3-alphaalpha09 and FY21-alphaalpha09, were partial competitive inhibitors of Cdc25B2 with Ki values of 7.6+/-0.5 and 1.6+/-0.2 microM, respectively. FY21-alphaalpha09 possessed only moderate activity against PTP1B. Consistent with its in vitro anti-phosphatase activity, FY21-alphaalpha09 inhibited growth in MDA-MB-231 and MCF-7 human breast cancer cell lines. FY21-alphaalpha09 also inhibited the G2/M transition in tsFT210 cells, consistent with Cdc25B inhibition. Several architectural requirements for DSPase inhibition were revealed through modification of the side chain moieties or variable core region of the pharmacophore, which resulted in decreased compound potency. The structure of FY21-alphaalpha09 provides a useful platform from which additional potent and more highly selective phosphatase inhibitors might be generated.  相似文献   

7.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

8.
Phosphorylation of serine, threonine, and tyrosine controls fundamental mammalian cell events and is achieved by kinases which, in turn, are in dynamic relationship with phosphatases. Few selective inhibitors of protein tyrosine and dual specificity phosphatases are readily available. Based on SAR studies of naturally occurring phosphatase inhibitors and following up on previously published research, we have designed a new pharmacophore model V and synthesized a new library of functional analogues of V. All synthetic steps were carried out and optimized employing combinatorial chemistry methods on Wang resin. All compounds were tested in vitro for their ability to inhibit recombinant human protein tyrosine (PTP1B) and dual-specificity (Cdc25B(2) and VHR) phosphatases. Three of the approximately 70 compounds in our library inhibited Cdc25B(2) by 50% at 375-490 microM. No compounds inhibited PTP1B, and only one blocked VHR. Cell-culture studies revealed no toxicity to human breast cancer cells with two of the phosphatase inhibitors.  相似文献   

9.
We report the synthesis of a series of monoanionic phosphotyrosyl (pTyr) mimetic-containing tripeptides based on 'Fmoc-Glu(OBn)-Xxx-Leu-amide' (where Xxx = pTyr mimetic) and their N-terminally modified derivatives. The inhibitory potencies of compounds were tested against YopH and human PTP1B enzymes. Several compounds exhibited noteworthy activity against both YopH and PTP1B. Among the N-terminally modified analogues, 5-methylindole derivative 30 was found to be the best moiety to replace base-labile Fmoc group. A mode of binding with YopH is proposed for tripeptides 21, 30, and 31.  相似文献   

10.
Protein tyrosine phosphatase 1B (PTP1B) is an important factor in non-insulin-dependent diabetes mellitus (type-2 diabetes), and a promising target for treatment of diabetes and obesity. Therefore, the aim of this study is to investigate the inhibitory activities of constituents (three new together with twelve known triterpenes compounds) isolated from the hydrolyzate of total saponins from Gynostemma pentaphyllum. Their structures were accomplished mainly base on the spectroscopic methods, and then were further confirmed by X-ray crystal diffraction. All the compounds were evaluated for inhibitory activity against PTP1B. Current data suggested that the compounds 1, 3, 12, 13 and 14 were considered to be potential as antidiabetic agents, in which they could significantly inhibit the PTP1B enzyme activity in a dose-dependent manner.  相似文献   

11.
Fifteen novel sulfathiazole-related compounds were designed as PTP1B inhibitors based on a previously reported allosteric inhibitor (1) of PTP1B. These compounds were synthesized and evaluated against human recombinant PTP1B. Six compounds (3, 4, 8 and 1416) exhibited significant inhibitory activity against PTP1B. The most active compound (16) showed IC50 value of 3.2 μM and kinetic analysis indicated that it is a non-competitive inhibitor of PTP1B. Furthermore, compound 16 demonstrated excellent selectivity to PTP1B over other PTPs. It also displayed in vivo insulin sensitizing effect in the insulin resistant mice.  相似文献   

12.
In the course of ongoing research on protein tyrosine phosphatase 1B (PTP1B) inhibitory compounds from Antarctic lichens, four new diterpene furanoids, hueafuranoids A–D (14) have been isolated from the MeOH extract of Antarctic lichen Huea sp. by various chromatographic methods. The structures of these compounds were elucidated by analysis of NMR and MS data, and comparing their spectral data with those in the literature. Compound 1 showed inhibitory activity against therapeutically targeted protein, PTP1B with an IC50 value of 13.9 μM. The kinetic analysis of PTP1B inhibition by hueafuranoid A (1) suggested that the diterpene furanoids encountered in this study inhibited PTP1B activity in a non-competitive manner.  相似文献   

13.
Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator in insulin- and leptin-signaling cascades as well as a positive regulator in tumorigenesis, and much attention has been paid to PTP1B inhibitors as potential therapies for diabetes, obesity, and cancer. In the present study, the screening of a compound library of licorice flavonoids allowed for the discovery of several compounds, including licoagrone (3), licoagrodin (4), licoagroaurone (5), and isobavachalcone (6), as new PTP1B inhibitors. It was revealed that these compounds inhibit the activity of PTP1B in different modes and with different selectivities and that they exhibit different cellular activity in the insulin-signaling pathway. Glycybenzofuran (1), a competitive PTP1B inhibitor, showed both excellent inhibitory selectivity against PTP1B and cellular activity on the insulin-stimulated Akt phosphorylation level. The similarity of its action profiling in the insulin-signaling pathway suggested its potential as a new anti-insulin-resistant drug candidate.  相似文献   

14.
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that plays a critical role in down-regulating insulin signaling through dephosphorylation of the insulin receptor. Studies have shown that PTP1B knock-out mice showed increased insulin sensitivity in muscle and liver as well as resistance to obesity. A series of functionalized acetophenones were synthesized and evaluated for their PTP1B inhibitory activity. Some of the screened compounds displayed good inhibitory activity.  相似文献   

15.
Synthetic dysidiolide, as well as several related compounds containing a gamma-hydroxybutenolide moiety, were tested in in vitro Cdc25 assays against both synthetic and natural substrates. Contrary to literature values which are in the low micromolar range, we observe only millimolar inhibitory activity for these compounds versus Cdc25 phosphatase.  相似文献   

16.
Brault L  Bagrel D 《Life sciences》2008,82(5-6):315-323
Dual-specific phosphatases Cdc25 play a critical role in the cell cycle regulation by activating kinases of Cdk/cyclin complexes. Three Cdc25 isoforms (A, B and C) have been identified in mammalians. Cdc25A and B display oncogenic properties and are over-expressed in different tumors. Cdc25 phosphatases are therefore attractive targets for therapeutic strategies. Novel maleic anhydride derivatives bearing a fatty acid chain of variable size have been synthesized and tested for their Cdc25 inhibitory potential using an in vitro assay. We report biological activity of ineffective, moderate, and efficient inhibitors on breast cancer cells (MCF7) and its counterpart resistant to vincristine (Vcr-R). The most potent compounds induced Cdk2 inhibition and accumulation in G0/G1 phase of the cell cycle. Moreover, apoptosis was triggered within 48-h treatment, without oxidative burst and modulation of the Bax to Bcl-2 ratio. When used as pre-treatments, these derivatives were also able to potentiate adriamycin and cisplatin toxicity in both cell lines. Thus, maleic anhydride derivatives may mediate apoptosis through a cell cycle blockage via inhibition of Cdc25. This class of inhibitors may present potential interest in therapeutic strategies against cancer.  相似文献   

17.
Protein tyrosine phosphatases have a central role in the maintenance of normal cellular functionality. For example, PTP1B has been implicated in insulin-resistance, obesity, and neoplasia. Mitogen-activated protein kinase phosphatase-1 (MKP-1 or DUSP1) dephosphorylates and inactivates mitogen-activated protein kinase (MAPK) substrates, such as p38, JNK, and Erk, and has been implicated in neoplasia. The lack of readily available selective small molecule inhibitors of MKP family members has severely limited interrogation of their biological role. Inspired by a previously identified inhibitor (NSC 357756) of MKP-3, we synthesized seven NSC 357756 congeners, which were evaluated for in vitro inhibition against several protein phosphatases. Remarkably, none displayed potent inhibition against MKP-3, including the desamino NSC 357756 analog NU-154. Interestingly, NU-154 inhibited human PTP1B in vitro with an IC(50) value of 24 +/- 1 microM and showed little inhibition against Cdc25B, MKP-1, and VHR phosphatases. NU-126 [2-((E)-2-(5-cyanobenzofuran-2-yl)vinyl)-1H-indole-6-carbonitrile] inhibited MKP-1 and VHR in vitro but was less active against human MKP-3, Cdc25B, and PTP1B. The inhibition of MKP-1 by NU-126 was independent of redox processes. The benzofuran substructure represents a new potential scaffold for further analog development and provides encouragement that more selective and potent inhibitors of MKP family members may be achievable.  相似文献   

18.
A series of bromophenol derivatives were synthesized and evaluated as protein tyrosine phosphatase 1B (PTP1B) inhibitors in vitro and in vivo based on bromophenol 4e (IC(50)=2.42 μmol/L), which was isolated from red algae Rhodomela confervoides. The results showed that all of the synthesized compounds displayed weak to good PTP1B inhibition at tested concentration. Among them, highly brominated compound 4g exhibited promising inhibitory activity against PTP1B with IC(50) 0.68 μmol/L, which was approximately fourfold more potent than lead compound 4e. Further, compound 4g demonstrated high selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). More importantly, in vivo antidiabetic activities investigations of compound 4g also demonstrated inspiring results.  相似文献   

19.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

20.
Cdc25B protein phosphatase represents an attractive potential therapeutic target for small molecule intervention because of its central role in positively regulating cyclin dependent kinases and thus cell proliferation, as well as its elevated levels observed in many human tumors. Among the most potent previously identified Cdc25 inhibitors have been quinoline quinones, which have a rich legacy as therapeutic agents but have also been associated with nonspecific interactions. In this study, we have interrogated the structure-activity relationship of a focused series of C2-, C3-, or C4-modified quinoline-5,8-quinones on Cdc25B inhibition in vitro. Substitution at the C3-position in this small chemical series were slightly superior to substitutions at the C3-position. For all compounds, recombinant human Cdc25B was approximately 5-fold more sensitive compared to recombinant human PTP1B. Two compounds inhibited HeLa cell growth with IC50 values of approximately 2 microM. Consistent with other para-quinones, some members of this series generated intracellular reactive oxygen species and the in vitro enzyme inhibition was mitigated by addition of reductants or catalase. These results indicate that chemical modifications on the pyridine core are tolerated, providing additional sites for future structural modification of this biologically active pharmacophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号