首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene for parathyroid hormone-like peptide is on mouse chromosome 6   总被引:2,自引:0,他引:2  
The single-copy parathyroid hormone-like peptide gene (Pthlh) was assigned to mouse chromosome 6 using a rat PTHLH cDNA as hybridization probe in the Southern blot analysis of DNAs isolated from a panel of mouse x Chinese hamster cell hybrids. The mouse parathyroid hormone gene (Pth) has previously been assigned to mouse chromosome 7 and the PTHLH and PTH genes have also been shown to be on different chromosomes in human and rat. Therefore, despite significant amino-terminal sequence homology between the PTHLH and PTH peptides, as well as similarities in the structural organization of the human PTHLH and PTH genes, the genes encoding these peptides have discrete chromosomal locations in the mouse, rat, and man.  相似文献   

2.
The gene coding for hepatocyte growth factor-like protein has been localized to mouse chromosome 9 at a locus (Hgfl) distal to the Trf locus. The likely gene order in this region is centromere-Trf-Gnai-2-Hgfl-Cck. The region surrounding the Hgfl locus shows homology of syntenty to band p21 on human chromosome 3.  相似文献   

3.
The met proto-oncogene was mapped in the mouse and cat genomes with the use of mouse X hamster and cat X rodent somatic cell hybrid DNA panels. Based on these analyses we assigned the met gene to mouse chromosome 6 and to cat chromosome A2. We also assigned the cat raf-1 proto-oncogene to the A2 chromosome; met and raf-1 are the first cloned DNAs mapped to this linkage group. Using an interspecies backcross we further localized met on mouse chromosome 6 to a position proximal to the beta chain of the T-cell receptor. This places met near the obese locus in a region of mouse chromosome 6 that appears to be homologous with the long arm of human chromosome 7. The close linkage of met to the gene responsible for cystic fibrosis in humans suggests that further genetic analysis of mouse chromosome 6 may be useful in developing a mouse model for the disease.  相似文献   

4.
Comparative mapping between the human and the mouse genomes allows characterization of linkage groups that have been conserved over evolution. In this study, genes previously localized to adjacent regions of human chromosome 1 were mapped to discrete regions on distal mouse chromosomes 1 and 3 using an interspecific cross. Linkage analysis in mouse defined two groups in which the gene order appears to be the same as that in humans: 15 genes localized between human chromosome 1q21 and 1q32 were found to span 29.5 cM on distal mouse chromosome 1; 6 genes localized between human chromosome 1q21 and 1p22 spanned 15.6 cM on distal mouse chromosome 3. These data suggest that gene order within large chromosome segments may remain stable over long periods of evolution and that the position of the centromere may reflect a late event in the evolution of higher eukaryotic organisms. These studies provide a model for examination of specific evolutionary events.  相似文献   

5.
Maple syrup urine disease (MSUD) is caused by the deficiency of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex. The multienzyme complex is a macromolecule (Mr 4 X 10(6] consisting of at least six distinct subunits. In this study, the human E1 beta gene (BCKDHB) has been localized to human chromosome 6 by hybrid somatic cell analysis, and regionally assigned to chromosome bands 6p21-22 by in situ hybridization. The E2 gene (DBT), which was previously localized to chromosome 1, is regionally assigned to the chromosome band 1p31 also by in situ hybridization. Localization of the E1 beta gene to chromosome 6p21-22 assigns another major human disease locus to a region that contains several important genes, including the major histocompatability complex, tumor necrosis factor, and heat-shock protein HSP70. Mapping of the E1 beta and the E2 genes may provide information for the linkage analysis of MSUD families with mutations in these two loci.  相似文献   

6.
In the homozygous condition, the mutation adr (arrested development of righting response) of the mouse causes a myotonia and a drastic reduction of the Ca2+-binding protein parvalbumin (PV) in fast muscles. Using a rat PV probe, a mouse cDNA clone was isolated from a lambda gt11 wild-type fast-muscle library and its nucleotide sequence was determined. The protein coding and the 3' nontranslated regions of the mouse gene show extensive homology with the rat PV gene. The result of Southern blot hybridization is consistent with a single copy gene for parvalbumin. Restriction fragment length polymorphisms (RFLPs) between Mus musculus domesticus (e.g. C57BL/6) and Mus spretus (SPE) were detected with the enzymes Eco RI, Pst I, and Sst I. The restriction fragment patterns of DNA samples from 65 individual offspring of (C57BL/6 x SPE)F1 x C57BL/6 backcrosses were tested with the PV probe and matched, for linkage detection, to pre-existing patterns established with various RFLP probes on the same samples. A co-distribution of PV-RFLPs with Pvt-1 and Mlvi-2, which had been localized on chromosome 15, was detected. Thus, the structural gene for PV, designated Pva, maps to chromosome 15 of the mouse whereas the adr mutation shows no linkage with markers on this chromosome. Gene locus homology between chromosome 15 of the mouse and chromosome 22 of man (which carries the human PV gene) is discussed.  相似文献   

7.
The aspermia mutation of the rat exhibits male sterility caused by arrest of spermatogenesis, which is controlled by an autosomal single recessive gene (as). The as locus has been mapped on rat chromosome 12. We recently identified a causative mutation for the aspermia phenotype of the as homozygous rats in the gene encoding Fkbp6, a member of the immunophilins FK506 binding proteins. In this paper, we report the fine mapping of the as locus by linkage analysis combined with comparative mapping using rat, mouse, and human genomic sequences and expression analysis of genes located in the as region. We constructed a fine linkage map of the region of rat chromosome 12 close to the as locus by using 13 microsatellite markers and localized the as locus to a 1.0-cM interval. Comparison of the linkage map with physical maps of rat, mouse, and human refined the as critical region in a 2.2-Mb segment of the rat physical map between the D12Nas3 and D12Nas8 genes, which includes the Fkbp6 gene. A centromeric part of this segment corresponds to the region commonly deleted in Williams syndrome, a human complex developmental disorder, on human chromosome 7q11.23. The expression analysis of 23 genes located on the 2.2-Mb segments in various mouse tissues identified genes exclusively or strongly expressed in the testis.  相似文献   

8.
A (GT)n repeat in intron 4 of the functional human HMG14 gene on chromosome 21 was used as polymorphic marker to map this gene relative to the genetic linkage map of human chromosome 21. Variation in the length of the (GT)n repeat was detected by electrophoresis on polyacrylamide gels of DNA amplified by the polymerase chain reaction using primers flanking the repeat. The observed heterozygosity of this polymorphism in 40 CEPH families was 58% with six different alleles. Linkage analysis localized the HMG14 gene close to the ETS2 gene and locus D21S3 in chromosomal band 21q22.3.  相似文献   

9.
In humans, methylmalonyl acidemia is caused by a deficiency of L-methylmalonyl-CoA mutase (MUT) controlled by a gene that has been mapped to chromosome 6. The mouse homolog of this gene has now been mapped to mouse chromosome 17. Recombinant inbred and congenic strains place the mouse Mut locus 1.06 cM distal to H-2, between Pgk-2 and Ce-2. The relative order of syntenic probes flanking H-2 on mouse chromosome 17 and HLA on human chromosome 6 is shown to be different.  相似文献   

10.
A variant mouse plasmacytoma (MPC)-associated translocation chromosome has arisen by pericentric inversion and exchange of the distal segments of a Robertsonian 6;15 fusion chromosome in the CAK TEPC 1198 mouse plasmacytoma, as described earlier. In situ hybridization was performed on the normal and the inverted Rb chromosomes, using myc and kappa probes. On the normal Rb chromosome, myc was in the 15 D2/3 region, whereas kappa hybridized in the 6 C2 area, as expected. On the inverted Rb chromosome, myc remains on the centrometric side of the translocation breakpoint on the chromosome 15-derived portion, whereas kappa has moved to the chromosome 6-derived segment that joined the same breakpoint on the telomeric side. Taken together with our recent demonstration that the murine c-myc locus is oriented 'head up' on chromosome 15, and with the results of Cory and co-workers concerning the relationship between the kappa gene and the associated pvt-1 region in the CAK TEPC 1198 tumor, the following conclusions can be drawn: (i) in the variant translocation of the CAK TEPC 1198 MPC, the breakage occurs 3' of the c-myc gene, as in the human Burkitt lymphoma-associated variant translocations; (ii) the pvt-1 gene on chromosome 15 is distal to the myc gene; (iii) the kappa light chain locus is oriented 'head up' on mouse chromosome 6 and faces pvt-1 and, beyond it, c-myc, in a head-to-tail configuration.  相似文献   

11.
12.
Localization of the rhodopsin gene to the distal half of mouse chromosome 6   总被引:2,自引:0,他引:2  
We have assigned the mouse rhodopsin gene, Rho, to chromosome 6 using DNA from a set of mouse-hamster somatic hybrid cell lines and a partial cDNA clone for mouse opsin. This assignment rules out the direct involvement of the rhodopsin gene in the known mouse mutations that produce retinal degeneration, including retinal degeneration slow (rds, chromosome 17), retinal degeneration (rd, chromosome 5), Purkinje cell degeneration (pcd, chromosome 13), and nervous (nr, chromosome 8). Segregation of Rho-specific DNA fragment differences among 50 animals from an interspecific backcross (C57BL/6J X Mus spretus) X C57BL/6J indicates that the Rho locus is 4.0 +/- 2.8 map units distal to the locus for the proto-oncogene Raf-1 and 18.0 +/- 5.4 map units proximal to the locus for the proto-oncogene Kras-2. Linkage to Raf-1 was confirmed using four sets of recombinant inbred strains. The two loci RAF1 and RHO are also syntenic on human chromosome 3, but on opposite arms.  相似文献   

13.
The physical location of the mouse IFN-alpha locus (Ifa) on chromosome 4 was defined by in situ hybridization of a cloned mouse IFN-alpha probe to metaphase spreads in which one chromosome 4 was present as part of a single metacentric chromosome, all other chromosomes being acrocentric. (This approach greatly facilitates analysis and can be used even when it is difficult to obtain good banding). Using unbanded chromosomes, the grains were localized over the chromosome 4 part of the metacentric, in a region 0.61 +/- 0.07 (SD) of the distance from the centromere to the telomere. In Giemsa-banded spreads, the majority of the grains were in the region 4C3----C6. Consideration of these results and of the known linkage maps for mouse and man indicates that the Galt - Aco-1 - Ifa syntenic group spans a distance of approximately 14 cM and suggests that the same group on human 9p will also occupy a similarly sized region, with GALT proximal and IFL distal to the centromere.  相似文献   

14.
Genetic control of NKT cell numbers maps to major diabetes and lupus loci   总被引:6,自引:0,他引:6  
Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1(b) mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/alpha-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.  相似文献   

15.
N G Irving  J A Hardy  S D Brown 《Genomics》1991,9(2):386-389
Utilizing a Mus spretus/Mus domesticus (C57BL/10) interspecific backcross, we have constructed a multipoint genetic map of mouse chromosome 16 that extends 43.2 cM from the proximal Prm-1 locus to the distal Ets-2 locus. The genetic map incorporates three new markers: D16Smh6, a random genomic clone; Pgk-1ps1, a phosphoglycerate kinase pseudogene; and the growth-associated protein Gap43. The map position of Gap43 indicates the presence, on mouse chromosome 16, of a significant-size conserved linkage group with human chromosome 3.  相似文献   

16.
Chromosomal localization of zinc finger protein genes in man and mouse   总被引:5,自引:0,他引:5  
We have determined the mouse and human chromosomal location of a gene (Zfp-3) that codes for a protein that contains potential DNA zinc-binding fingers. An analysis of the segregation of restriction fragment length polymorphisms in recombinant inbred strains and in an interspecific backcross demonstrated that Zfp-3 is located on mouse chromosome 11. Zfp-3 is very closely linked to the Trp53-1 locus but unlinked to another finger protein gene Zfp-4 located on mouse chromosome 8. In humans ZFP3 has been localized to chromosome 17p12-17pter and thus is part of the conserved linkage group between this chromosome and the distal half of mouse chromosome 11.  相似文献   

17.
Recombinant inbred strain and interspecific backcross mice were used to create a molecular genetic linkage map of the distal portion of mouse chromosome 2. The orientation and distance of the Ada, Emv-13, Emv-15, Hck-1, Il-1a, Pck-1, Psp, Src-1 and Svp-1 loci from the beta 2-microglobulin locus and the agouti locus were established. Our mapping results have provided the identification of molecular markers both proximal and distal to the agouti locus. The recombinants obtained provide valuable resources for determining the direction of chromosome walking experiments designed to clone sequences at the agouti locus. Comparisons between the mouse and human genome maps suggest that the human homolog of the agouti locus resides on human chromosome 20q. Three loci not present on mouse chromosome 2 were also identified and were provisionally named Psp-2, Hck-2 and Hck-3. The Psp-2 locus maps to mouse chromosome 14. The Hck-2 locus maps near the centromere of mouse chromosome 4 and may identify the Lyn locus. The Hck-3 locus maps near the distal end of mouse chromosome 4 and may identify the Lck locus.  相似文献   

18.
Atrial natriuretic factors (ANF) are polypeptides having natriuretic, diuretic, and smooth muscle-relaxing activities that are synthesized from a single larger precursor: pronatriodilatin. Chromosomal assignment of the gene coding for human pronatriodilatin was accomplished by in situ hybridization of a [3H]-labeled pronatriodilatin probe to human chromosome preparations and by Southern blot analysis of somatic cell hybrid DNAs with normal and rearranged chromosomes 1. The human pronatriodilatin gene was mapped to the distal short arm of chromosome 1, in band 1p36. Southern blot analysis of mouse X Chinese hamster somatic cell hybrids was used to assign the mouse pronatriodilatin gene to chromosome 4. This assignment adds another locus to the conserved syntenic group of homologous genes located on the distal half of the short arm of human chromosome 1 and on mouse chromosome 4.  相似文献   

19.
20.
The human genes encoding the alpha and beta forms of the retinoic acid receptor are known to be located on chromosomes 17 (band q21.1:RARA) and 3 (band p24:RARB). By in situ hybridization, we have now localized the gene for retinoic acid receptor gamma, RARG, on chromosome 12, band q13. We also mapped the three retinoic acid receptor genes in the mouse, by in situ hybridization, on chromosomes 11, band D (Rar-a); 14, band A (Rar-b); and 15, band F (Rar-g), respectively, and in the rat, using a panel of somatic cell hybrids that segregate rat chromosomes, on chromosomes 10 (RARA), 15 (RARB), and 7 (RARG), respectively. These assignments reveal a retention of tight linkage between RAR and HOX gene clusters. They also establish or confirm and extend the following homologies: (i) between human chromosome 17, mouse chromosome 11, and rat chromosome 10 (RARA); (ii) between human chromosome 3, mouse chromosome 14, and rat chromosome 15 (RARB); and (iii) between human chromosome 12, mouse chromosome 15, and rat chromosome 7 (RARG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号