首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human receptors for insulin-like growth factor 1 (IGF-1) and insulin, and two chimeric receptors consisting of ligand-binding, extracellular insulin receptor and intracellular IGF-1 receptor structures, have been expressed in NIH-3T3 fibroblasts. All four receptor types were synthesized, processed and transported to the cell surface to form high-affinity binding sites. All normal and chimeric receptors had an active tyrosine kinase which was regulated by homologous or heterologous ligands respectively. In addition, cell surface receptors were internalized efficiently and subjected to accelerated degradation in the presence of ligand. While all four types of receptor stimulated glucose transport with similar efficiency, they displayed significant differences in their mitogenic signalling potentials. Receptors with an IGF-1 receptor cytoplasmic domain were 10 times more active in stimulating DNA synthesis than the insulin receptor. In NIH-3T3 cells overexpressing wild-type and chimeric receptors, maximal growth responses obtained with IGF-1 or insulin alone were equivalent to those obtained with 10% fetal calf serum. We conclude that in the cell system employed the receptors for IGF-1 and insulin mediate short-term responses similarly, but display distinct characteristics in their long-term mitogenic signalling potentials.  相似文献   

2.
Insulin-like growth factor-I (IGF-I) receptors and insulin receptors belong to the same subfamily of receptor tyrosine kinases and share a similar set of intracellular signaling pathways, despite their distinct biological actions. In the present study, we evaluated T cell death-associated gene 51 (TDAG51), which we previously identified by cDNA microarray analysis as a gene specifically induced by IGF-I. We characterized the signaling pathways by which IGF-I induces TDAG51 gene expression and the functional role of TDAG51 in IGF-I signaling in NIH-3T3 (NWTb3) cells, which overexpress the human IGF-I receptor. Treatment with IGF-I increased TDAG51 mRNA and protein levels in NWTb3 cells. This effect of IGF-I was specifically mediated by the IGF-IR, because IGF-I did not induce TDAG51 expression in NIH-3T3 cells overexpressing a dominant-negative IGF-I receptor. Through the use of specific inhibitors of various protein kinases, we found that IGF-I induced TDAG51 expression via the p38 MAPK pathway. The ERK, JNK, and phosphatidylinositol 3-kinase pathways were not involved in IGF-I-induced regulation of TDAG51. To assess the role of TDAG51 in IGF-I signaling, we used small interfering RNA (siRNA) expression vectors directed at two different target sites to reduce the level of TDAG51 protein. In cells expressing these siRNA vectors, TDAG51 protein levels were decreased by 75-80%. Furthermore, TDAG51 siRNA expression abolished the ability of IGF-I to rescue cells from serum starvation-induced apoptosis. These findings suggest that TDAG51 plays an important role in the anti-apoptotic effects of IGF-I.  相似文献   

3.
BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells.  相似文献   

4.
Annexin II is secreted into the extracellular environment, where, via interactions with specific proteases and extracellular matrix proteins, it participates in plasminogen activation, cell adhesion, and tumor metastasis and invasion. However, mechanisms regulating annexin II transport across the cellular membrane are unknown. In this study, we used coimmunoprecipitation to show that Annexin-II was bound to insulin and insulin-like growth factor-1 (IGF-1) receptors in PC12 cells and NIH-3T3 cells overexpressing insulin (NIH-3T3(IR)) or IGF-1 receptor (NIH-3T3(IGF-1R)). Stimulation of insulin and IGF-1 receptors by insulin caused a temporary dissociation of annexin II from these receptors, which was accompanied by an increased amount of extracellular annexin II detected in the media of PC12, NIH-3T3(IR), and NIH-3T3(IGF-1R) cells but not in that of untransfected NIH-3T3 cells. Activation of a different growth factor receptor, the platelet-derived growth factor receptor, did not produce such results. Tyrphostin AG1024, a tyrosine kinase inhibitor of insulin and IGF-1 receptor, was shown to inhibit annexin II secretion along with reduced receptor phosphorylation. Inhibitors of a few downstream signaling enzymes including phosphatidylinositol 3-kinase, pp60c-Src, and protein kinase C had no effect on insulin-induced annexin II secretion, suggesting a possible direct link between receptor activation and annexin II secretion. Immunocytochemistry revealed that insulin also induced transport of the membrane-bound form of annexin II to the outside layer of the cell membrane and appeared to promote cell aggregation. These results suggest that the insulin receptor and its signaling pathways may participate in molecular mechanisms mediating annexin II secretion.  相似文献   

5.
6.
BALB/c3T3 cells are exquisitely growth regulated and require both platelet-derived growth factor and insulin-like growth factor-1 (IGF-1) for optimal proliferation. BALB/c3T3 cells that constitutively express IGF-1 and elevated levels of IGF-1 receptor (IGF-1R) are capable of growth in serum-free medium without the addition of any exogenous growth factors. BALB/c3T3 cells overexpressing only the IGF-1R plasmid required IGF-1 or insulin for serum-free growth. Antisense oligodeoxynucleotides complementary to IGF-1R mRNA inhibited IGF-1-mediated cell growth. Under these conditions, neither the epidermal growth factor receptor nor phospholipase C gamma 1 was autophosphorylated. These findings indicate that constitutive expression of IGF-1 and IGF-1R allows 3T3 cells to grow in serum-free medium without addition of those exogenous growth factors that are required by the parent cell line.  相似文献   

7.
Low density lipoproteins (LDLs) play an important role in the pathogenesis of atherosclerosis. LDL has been shown to be mitogenic and proapoptotic for vascular smooth muscle cells. However, the mechanisms are poorly understood and may result from an alteration in intracellular mitogenic signaling either directly by LDL or indirectly through an autocrine effect involving growth factor secretion and/or growth factor receptor expression. Insulin-like growth factor-1 (IGF-1) is an autocrine/paracrine factor for vascular smooth muscle cells and has potent anti-apoptotic effects. Thus, we hypothesized that part of the proliferative responses to LDLs may be explained by its modulation of IGF-1 or IGF-1 receptor (IGF-1R) expression. Treatment of rat vascular smooth muscle cells with increasing doses of native LDL dose-dependently increased IGF-1 mRNA by up to 2.6-fold; however, native LDL had no effect on IGF-1R mRNA expression. In contrast, the same doses of oxidized LDL significantly reduced IGF-1 and IGF-1R mRNA by 80 and 61%, respectively, and reduced IGF-1 and IGF-1R protein expression by 63 and 46%. In addition, native and oxidized LDL significantly increased IGF-1-binding protein-2 and IGF-1-binding protein-4 expression as measured by Western ligand blot. Most interestingly, anti-IGF-1 antiserum completely inhibited LDL-induced but not serum-induced increase in (3)H-thymidine incorporation, indicating a requirement for IGF-1 in the LDL-stimulated mitogenic signaling pathway. In summary, these results suggest that native and oxidized LDLs have differential effects on IGF-1 and IGF-1R expression. Because IGF-1 is a potent survival factor for vascular smooth muscle cells, our findings suggest that moderately oxidized LDL may favor proliferation of smooth muscle cells, whereas oxidized LDL may contribute to plaque apoptosis by local depletion of IGF-1 and IGF-1R.  相似文献   

8.
The insulin receptor and insulin-like growth factor 1 receptor (IGF-1R), activated by their ligands, control metabolism, cell survival, and proliferation. Although the signaling pathways activated by these receptors are well characterized, regulation of their activity is poorly understood. To identify regulatory proteins we undertook a two-hybrid screen using the IGF-1R beta-chain as bait. This screen identified Receptor for Activated C Kinases (RACK1) as an IGF-1R-interacting protein. RACK1 also interacted with the IGF-1R in fibroblasts and MCF-7 cells and with endogenous insulin receptor in COS cells. Interaction with the IGF-1R did not require tyrosine kinase activity or receptor autophosphorylation but did require serine 1248 in the C terminus. Overexpression of RACK1 in either R+ fibroblasts or MCF-7 cells inhibited IGF-1-induced phosphorylation of Akt, whereas it enhanced phosphorylation of Erks and Jnks. Src, the p85 subunit of phosphatidylinositol 3-kinase, and SHP-2 were all associated with RACK1 in these cells. Interestingly, the proliferation of MCF-7 cells was enhanced by overexpression of RACK1, whereas IGF-1-mediated protection from etoposide killing was greatly reduced. Altogether the data indicate that RACK1 is an IGF-1R-interacting protein that can modulate receptor signaling and suggest that RACK1 has a particular role in regulating Akt activation and cell survival.  相似文献   

9.
Insulin, insulin like growth factor (IGF)-1, and AMP-activated protein kinase (AMPK) signaling regulate independently angiogenesis through vascular endothelial growth factor (VEGF) expression. In the present study, we investigated a potential cross-talk between these signaling pathways on hypoxia-inducible factor (HIF)-1alpha and VEGF expression. Retinal epithelial ARPE-19 cells were treated with AICAR, an AMPK activator, alone or in combination with insulin and IGF-1. AICAR stimulated VEGF mRNA expression, but did not modify the insulin- and IGF-1-induced VEGF expression. We have investigated the effect of AICAR on insulin and IGF-1 signaling pathways. We observed that AICAR increased insulin- and IGF-1-induced phosphorylation of PKB, whereas phosphorylation of S6K-1 was decreased. Moreover, AICAR and metformin inhibited the ability of insulin and IGF-1 to induce HIF-1alpha expression. These results show that AICAR and insulin/IGF-1 regulate VEGF expression through different mechanisms.  相似文献   

10.
11.
Gab-1-mediated IGF-1 signaling in IRS-1-deficient 3T3 fibroblasts   总被引:2,自引:0,他引:2  
The insulin receptor substrate (IRS) family of proteins mediate a variety of intracellular signaling events by serving as signaling platforms downstream of several receptor tyrosine kinases including the insulin and insulin-like growth factor-1 (IGF-1) receptors. Recently, several new members of this family have been identified including IRS-3, IRS-4, and growth factor receptor-binding protein 2-associated binder-1 (Gab-1). 3T3 cell lines derived from IRS-1-deficient embryos exhibit a 70-80% reduction in IGF-1-stimulated S-phase entry and a parallel decrease in the induction of the immediate-early genes c-fos and egr-1 but unaltered activation of the mitogen-activated protein kinases extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2. Reconstitution of IRS-1 expression in IRS-1-deficient fibroblasts by retroviral mediated gene transduction is capable of restoring these defects. Overexpression of Gab-1 in IRS-1-deficient fibroblasts also results in the restoration of egr-1 induction to levels similar to those achieved by IRS-1 reconstitution and markedly increases IGF-1-stimulated S-phase progression. Gab-1 is capable of regulating these biological end points despite the absence of IGF-1 stimulated tyrosine phosphorylation. These data provide evidence that Gab-1 may serve as a unique signaling intermediate in insulin/IGF-1 signaling for induction of early gene expression and stimulation of mitogenesis without direct tyrosine phosphorylation.  相似文献   

12.
Defective bone formation is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in bone. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in osteoblasts. To overcome this problem, we examined insulin signaling and action in primary osteoblasts engineered for conditional disruption of the IGF-1 receptor (DeltaIGF-1R). Calvarial osteoblasts from mice carrying floxed IGF-1R alleles were infected with adenoviral vectors expressing the Cre recombinase (Ad-Cre) or green fluorescent protein (Ad-GFP) as control. Disruption of IGF-1R mRNA (>90%) eliminated IGF-1R without affecting insulin receptor (IR) mRNA and protein expression and eliminated IGF-1R/IR hybrids. In DeltaIGF-1R osteoblasts, insulin signaling was markedly increased as evidenced by increased phosphorylation of insulin receptor substrate 1/2 and enhanced ERK/Akt activation. Microarray analysis of RNA samples from insulin-treated, DeltaIGF-1R osteoblasts revealed striking changes in several genes known to be downstream of ERK including Glut-1 and c-fos. Treatment of osteoblasts with insulin induced Glut-1 mRNA, increased 2-[1,2-(3)H]-deoxy-d-glucose uptake, and enhanced proliferation. Moreover, insulin treatment rescued the defective differentiation and mineralization of DeltaIGF-1R osteoblasts, suggesting that IR signaling can compensate, at least in part, for loss of IGF-1R signaling. We conclude that insulin exerts direct anabolic actions in osteoblasts by activation of its cognate receptor and that the strength of insulin-generated signals is tempered through interactions with the IGF-1R.  相似文献   

13.
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta-cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-1 activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1.  相似文献   

14.
Murine 3T3-L1 cells were cultured in the presence of fetal bovine serum (FBS) washed with an anion exchange resin and charcoal. Using the abundance of a-FABP and fatty acid synthase (FAS) as criteria of differentiation, IGF-1 was found to be 10-fold more potent than insulin as an inducer of preadipocyte differentiation. As little as 0.5 nM IGF-1 induced expression of FAS and a-FABP mRNAs whereas a minimum of 5 nM insulin was required. The data indicate IGF-1 specifically induces the expression of a-FABP in 3T3-L1 preadipocytes whereas the effect of insulin is likely via insulin's binding to the IGF-1 receptor.  相似文献   

15.
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.  相似文献   

16.
Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.  相似文献   

17.
18.
The intracellular domain of the insulin receptor possesses activity as a tyrosine-specific protein kinase. The receptor tyrosine kinase is stimulated by insulin binding to the extracellular domain of the receptor. Previously, we have identified a patient with a genetic form of insulin resistance who is heterozygous for a mutation substituting Ile for Met1153 in the tyrosine kinase domain of the receptor near the cluster of the three major autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163). In this investigation, the Ile1153 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs receptor tyrosine kinase activity and also inhibits the ability of insulin to stimulate 2-deoxyglucose uptake and thymidine incorporation. These data support the hypothesis that the receptor tyrosine activity plays a necessary role in the ability of the receptor to mediate insulin action in vivo. Furthermore, expression of the Ile1153 mutant receptor exerted a dominant negative effect to inhibit the ability of endogenous murine receptors for insulin and insulin-like growth factor I to mediate their actions upon the cell. This observation is consistent with previous suggestions that mutant receptors dimerize with wild type receptors, thereby creating hybrid molecules which lack biological activity. The dominant negative effect of the mutant receptor may explain the dominant mode of inheritance of insulin resistance caused by the Ile1153 mutation. Finally, the mutation inhibits the ability of insulin to stimulate receptor endocytosis. This may explain the normal number of insulin receptors on the surface of the patient's cells in vivo. Despite the presence of markedly elevated levels of insulin in the patient's plasma, the receptors were resistant to down-regulation.  相似文献   

19.
Expression of a mutant H-ras gene confers a transformed phenotype to rat-1 fibroblasts which is basically independent of exogenous growth factors (GFs). Rat-1 cells induced to express high levels of the normal H-ras gene were also found to display a transformed phenotype. In contrast to cells expressing mutant H-ras, these cells were dependent on GFs. We used this difference in GF dependence to analyze a possible involvement of exogenous GFs in H-ras function. Compared with untransformed rat-1 cells, cells overexpressing normal H-ras displayed an elevated response toward insulinlike growth factor 1 (IGF-1), insulin, and bombesin and an increased sensitivity toward phosphatidic acids. It was found that 8-bromo-cyclic AMP inhibited the responses to all GFs in rat-1 cells but had no effect on mutant-H-ras-transformed cells. In cells overexpressing normal H-ras, 8-bromo-cyclic AMP inhibited the responses to all GFs except those to insulin and IGF-1. This implies that overexpression of normal H-ras in the presence of insulin/IGF-1 is functionally similar to the expression of mutant H-ras, since mutant H-ras can circumvent this block by itself. These and other results strongly suggest a functional linkage between insulin/IGF-1 and normal p21 H-ras.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号