首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A commonly used enzymatic recycling assay for pyridine nucleotides has been adapted to directly measure the NAD+/NADH redox ratio in Drosophila melanogaster. This method is also suitable for quantification of NADP+ and NADPH. The addition of a coupling reaction removing acetaldehyde produced from the alcohol dehydrogenase (ADH) reaction was shown to improve the linearity of NAD(H) assay. The advantages of this assay method are that it allows the determination of both NAD+ and NADH simultaneously while keeping enzymatic degradation of pyridine nucleotides minimal and also achieving better sensitivity. This method was used to determine the redox ratio of D. melanogaster and validated substantial decrease of redox ratio during starvation.  相似文献   

2.
It has been shown that direct excitation of NADH (or NADPH) in aqueous medium at 254 nm, or at wavelengths longer than 320 nm (where only the reduced nicotinamide moiety absorbs), leads to generation of NAD+ (or NADP+). The reaction proceeds both in the presence and absence of oxygen. Under aerobic conditions the reaction is accompanied by formation of H2O2 at a level equimolar with that of the NADH present in solution. On irradiation at wavelengths longer than 320 nm, conversion of NADH to enzymatically active NAD+ is about 75%. Under analogous irradiation conditions, the dimers (NAD)2 and (NADP)2 undergo disproportionation to NAD+ and NADP+, respectively, to the extent of 90%. Both physicochemical and enzymatic criteria were employed to formulate mechanisms for the photooxidation of NADH and the photodisproportionation of the dimer (NAD)2.  相似文献   

3.
4.
Nicotinamide adenine dinucleotide (NAD) is a coenzyme in metabolic reactions and cosubstrate in signaling pathways of cells. While the intracellular function of NAD is well described, much less is known about its importance as an extracellular molecule. Moreover, there is only little information about the concentration of extracellular NAD and the ratio between its oxidized (NAD+) and reduced (NADH) form in humans. Therefore, our study aimed at the analysis of total NAD and NAD+/NADH ratio in human plasma depending on sex and age. First, an enzymatic assay was established for detecting NAD+ and NADH in human plasma samples. Then, plasma NAD was analyzed in 205 probands without severe diseases (91 men, 114 women) being 18–83 years old. The total plasma NAD concentration was determined with median 1.34 µM (0.44–2.88 µM) without difference between men and women. Although the amounts of NAD+ and NADH were nearly balanced, women had higher plasma NAD+/NADH ratios than men (median 1.33 vs. 1.09, P<0.001). The sex-related difference in the plasma NAD+/NADH ratio reduces with increasing age, an effect that was more obvious for two parameters of the biological age (skin autofluorescence, brachial-femoral pulse wave velocity (PWV)) than for the chronological age. However, plasma values for total NAD and NAD+/NADH ratio did not generally alter with increasing age. In conclusion, human plasma contains low micromolar concentrations of total NAD with higher NAD+/NADH redox ratios in adult but not older women compared with same-aged men.  相似文献   

5.
Tin (IV) oxide was made using an anodization and annealing method and was used as a working electrode in an electrochemical cofactor regeneration reaction. This material was formed with a large surface area, and by changing the preparation conditions, it was possible to control the morphology. Tin oxide has redox properties similar to those of frequently used mediators required for electron transfer between cofactors and an electrode. Therefore, by using tin oxide as a novel electrode, mediator-free electrochemical cofactor regeneration may be possible. Oxidation and reduction of the nicotinamide cofactors, NAD(P)H and NAD(P)+, were carried out under various reaction conditions. The results showed a high efficiency for oxidizing NADH over a broad range of pH and temperatures. The oxidation tendency of NADPH was also observed, and it demonstrated a similar reaction tendency as NADH. When using a tin oxide electrode, NAD+ was readily reduced to NADH, though the efficiency of this reaction was lower than for NADH oxidation. Oxidation of 2-propanol to acetone was used as a model system using alcohol dehydrogenase and the cofactor regeneration system suggested in this study. The electroenzymatic reaction showed efficient regeneration of NADP+ without a mediator.  相似文献   

6.
《Free radical research》2013,47(6):397-402
The nicotinamide adenine dinucleotide dimers (NAD)2 obtained by electrochemical reduction of NAD+ are oxidized by adriamycin in anaerobic photocatalyzed reaction yielding NAD+ and 7-deoxyadriamyci-none. Under the same conditions NADH is not oxidized.  相似文献   

7.
Carmen Lluis  Jorge Bozal 《BBA》1977,461(2):209-217
Chicken liver lactate dehydrogenase (l-lactate: NAD+ oxidoreductase, EC 1.1.1.27) catalyses the reversible reduction reaction of hydroxypyruvate to l-glycerate. It also catalyses the oxidation reaction of the hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form to glycolate. At pH 8, these latter two reactions are coupled. The coupled system equilibrium is attained when the NAD+/NADH ratio is greater than unity.Hydroxypyruvate binds to the enzyme at the same site as the pyruvate. When there are substances with greater affinity to this site in the reaction medium and their concentration is very high, hydroxypyruvate binds to the enzyme at the l-lactate site. In vitro and with purified preparation of lactate dehydrogenase, hydroxypyruvate stimulates the production of oxalate from glyoxylate-hydrated form and from NAD; the effect is due to the fact that hydroxypyruvate prevents the binding of non-hydrated form of glyoxylate to the lactate dehydrogenase in the pyruvate binding site. At pH 8, the l-glycerate stimulates the production of glycolate from glyoxylate-non-hydrated form and NADH since hydroxypyruvate prevents the binding of glyoxylate-hydrated form to the enzyme.  相似文献   

8.
The reaction of NAD(P)H:flavin oxidoreductase (flavin reductase) from Photobacterium fischeri is proposed to follow a ping-pong bisubstrate-biproduct mechanism. This is based on a steady-state kinetic analysis of initial velocities and patterns of inhibition by NAD+ and AMP. The double reciprocal plots of initial velocities versus concentrations of FMN or NADH show, in both cases, a series of parallel lines. The Michaelis constants for NADH (FMN saturating) and FMN (NADH saturating) are 2.2 and 1.2 × 10?4m, respectively. The product NAD+ has been found to be an inhibitor competitive with FMN but non-competitive with NADH. Using AMP as an inhibitor, noncompetitive inhibition patterns were observed with respect to both NADH and FMN as the varied substrate. In addition, the reductase was not inactivated by treatment with N-ethylmaleimide either alone or in the presence of FMN, but the enzyme was inactivated by N-ethylmaleimide in the presence of NADH. These findings suggest that flavin reductase shuttles between disulfide- and sulfhydryl-containing forms during catalysis.  相似文献   

9.
The mitochondrial NADH:NAD ratio of isolated intact liver cells incubated in calcium-free Hanks solution, in the endogenous state or with lactate, alanine, α-ketoglutarate, glutamate, fumarate, malate, or albumin-bound palmitate, was elevated by 1 mM CaCl2. The chloride salts of Ba+2, Cd+2, Cu+2, Mn+2, Sr+2, Zn+2, Al+3, Ce+3 and La+3 caused no such change. In contrast, calcium decreased the mitochondrial NADH:NAD ratio of hepatocytes incubated with succinate. Calcium did not affect the NADH:NAD ratio in the liver cell cytosol or the energy charge. The calcium-induced elevation in the mitochondrial NADH:NAD ratio was reversed by the uncoupler 1799. These observations demonstrate a specific effect of calcium ions in the regulation of the mitochondrial oxidation-reduction state in intact liver cells.  相似文献   

10.
1. The rate of NADH oxidation catalyzed by intact rat liver mitochondria is greatly stimulated in the presence of oxidized nicotinamide hypoxanthine dinucleotide (NHD+).2. Mitochondrial oxidation of external NHDH is from 20- to 40-fold more rapid than that of NADH, although these coenzymes are oxidized at similar rates by sonicated mitochondria.3. NADH and NADPH inhibit, while NADP+ stimulates NHDH oxidation.4. NHDH oxidation is inhibited by rotenone and CN?.5. NHDH oxidation is coupled to the phosphorylation of ADP to ATP, yielding P:2e? ratios approaching 3.6. These studies indicate that external NHDH is oxidized by the intramito-chondrial respiratory chain NADH dehydrogenase and that the inner mitochondrial membrane is significantly more permeable to NHDH than to NADH. Mammalian liver mitochondria have been reported to catalyze the enzymatic deamination of NAD(H) to NHD(H) [Buniatian, H. C. (1970) in Handbook of Neurochemistry (Lajtha, A., ed.), Vol. 3, pp. 399–411, Plenum Press, London and New York; Movcessian, S. G. and Manassian, R. F. (1967) in Problems of Brain Biochemistry, Vol. 3, pp. 53–66, Academic Press, Yerevan], suggesting a metabolic function for the deaminated analogue. It is concluded that this deamination reaction may be operative in a mechanism for the oxidation of cytoplasmic NADH by the respiratory chain.  相似文献   

11.
In contrast to other entrapment techniques, hydrocarbon-based liquid surfactant membranes have been shown to effectively retain NADH and NAD+. The activities of an immobilized yeast alcohol dehydrogenase (ADH) - NAD+ system and of a coupled cofactor recycling system involving ADH, diaphorase and ferricyanide were examined by determining the extent of both ethanol consumption and acetaldehyde accumulation in the external aqueous solution. The results establish suitability of the liquid membrane system for the immobilization of enzyme systems involving in-situ cofactor regeneration.  相似文献   

12.
A hollow fiber module was used as a reactor for conversion of ethanol to acetaldehyde in the presence of horse liver alcohol dehydrogenase as catalyst. Mass transport rates for NAD+, the overall acetaldehyde generation rate, catalyst effectiveness factors, and the overall order of the reaction with respect to NAD+ concentration were measured. A coupled-substrate reactor with continuous in situ regeneration of cofactor was also examined. Two substrates of opposite redox state were added simultaneously to the feed stream. NADH and acetaldehyde concentrations were monitored in the effluent stream. The cofactor recycle number, or ratio of moles of product to moles of NADH produced, exceeded 10,000 under certain conditions. While decreasing the NAD+ concentration in the feed stream decreased reactor productivity somewhat, it greatly enhanced the ratio of product formed per mole of NAD+ fed to the reactor. It is suggested that high cofactor costs in dehydrogenase reactors may be overcome with efficient in situ regeneration and secondary recovery and recycling of cofactor from the process stream.  相似文献   

13.
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.  相似文献   

14.
Li Q  Metthew Lam LK  Xun L 《Biodegradation》2011,22(6):1227-1237
Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD+ to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K d of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD+ (e.g., K d of 87 μM for FurX-NAD+). The kinetic data suggest that the four enzymes are efficient “furfural reductases” with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°′) for ethanol-dependent reduction of furfural was determined to be −1.1 kJ mol−1. The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.  相似文献   

15.
The effect of addition of product on the amplitude of the “burst” reaction of horse liver alcohol dehydrogenase was studied using a stopped-flow spectrophotofluorimeter. The amplitude of the “burst” formation of enzyme-bound NADH fluorescence was completely diminished by the addition of excess acetaldehyde or benzaldehyde in the reaction with NAD+ and ethanol or NAD+ and benzylalcohol, respectively. The results indicate that a significant concentration of the ternary enzyme-coenzyme-substrate complex was formed during the steady-state in the presence of product, and this ternary complex did not exhibit NADH fluorescence. The dissociation constants for the ternary complex were determined from the amplitudes of the “burst” reactions. The “active site” titration of the enzyme with NAD+ in the presence of ethanol and iso-butyramide is also described.  相似文献   

16.
The hydrogen-transfer stereospecificity of cabbage histidinol dehydrogenase at the C-4 position of NAD + was determined by means of 1H-NMR. A dehydrogenase reaction with enzymatically prepared [4-2H]NAD + was performed. The NMR spectrum of the reaction mixture showed a peak at about 2.8 ppm, indicating the production of [(4S)-2H]NADH, indicating that the stereospecificity of the enzyme was pro-R-specific.  相似文献   

17.
NAD kinase catalyzes the phosphorylation of NAD+ to synthesize NADP+, whereas NADH kinase catalyzes conversion of NADH to NADPH. The mitochondrial protein Pos5 of Saccharomyces cerevisiae shows much higher NADH kinase than NAD kinase activity and is therefore referred to as NADH kinase. To clarify the structural determinant underlying the high NADH kinase activity of Pos5 and its selectivity for NADH over NAD+, we determined the tertiary structure of Pos5 complexed with NADH at a resolution of 2.0 Å. Detailed analysis, including a comparison of the tertiary structure of Pos5 with the structures of human and bacterial NAD kinases, revealed that Arg-293 of Pos5, corresponding to His-351 of human NAD kinase, confers a positive charge on the surface of NADH-binding site, whereas the corresponding His residue does not. Accordingly, conversion of the Arg-293 into a His residue reduced the ratio of NADH kinase activity to NAD kinase activity from 8.6 to 2.1. Conversely, simultaneous changes of Ala-330 and His-351 of human NAD kinase into Ser and Arg residues significantly increased the ratio of NADH kinase activity to NAD kinase activity from 0.043 to 1.39; human Ala-330 corresponds to Pos5 Ser-272, which interacts with the side chain of Arg-293. Arg-293 and Ser-272 were highly conserved in Pos5 homologs (putative NADH kinases), but not in putative NAD kinases. Thus, Arg-293 of Pos5 is a major determinant of NADH selectivity. Moreover, Ser-272 appears to assist Arg-293 in achieving the appropriate conformation.  相似文献   

18.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

19.
Tania Bizouarn  Tina Bhakta 《BBA》2005,1708(3):404-410
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (Kd values) for NADPH (0.87 μM), NADP+ (16 μM), NADH (50 μM), and NAD+ (100-500 μM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The Kd values for NAD+ and NADH are similar to those previously reported with isolated dI, but the Kd values for NADP+ and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidised.  相似文献   

20.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+ · alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号